
Pursuing the Limits of
Cryptography

Arka Rai Choudhuri

5th November 2021

Advised by Abhishek Jain

Modern Cryptography

Digital Signatures

Digital Watermarking

Software Obfuscation

Computing over Encrypted Data

⋮

Limits of Cryptography

cool things we

want

Limits of Cryptography

cool things we

want

Things allowed by

cryptography

Focus of this work

Interactive Zero-

Knowledge Proofs

Secure

Computation

Focus of this work

Interactive Zero-

Knowledge Proofs

Secure

Computation

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Mathematical Proofs

Interactive Zero-Knowledge Proofs

Mathematical Proofs

Theorem: Let XYZ be a triangle … . .

Proof: For the sake of contradicttion,
let

Interactive Zero-Knowledge Proofs

Mathematical Proofs

Theorem: Let XYZ be a triangle … . .

Proof: For the sake of contradicttion,
let

Interactive Zero-Knowledge Proofs

Mathematical Proofs

Theorem: Let XYZ be a triangle … . .

Proof: For the sake of contradicttion,
let

Interactive Zero-Knowledge Proofs

Mathematical Proofs

Theorem: Let XYZ be a triangle … . .

Proof: For the sake of contradicttion,
let

accept

Interactive Zero-Knowledge Proofs

Mathematical Proofs

Theorem: Let XYZ be a triangle … . .

Proof: For the sake of contradicttion,
let

accept

Completeness
If the Theorem is true, Alice should

be able to convince Bob.

Soundness
If the Theorem is false, Alice should

not be able to convince Bob.

Interactive Zero-Knowledge Proofs

Mathematical Proofs

Theorem: Let XYZ be a triangle … . .

Proof: For the sake of contradicttion,
let

accept

Completeness
If the Theorem is true, Alice should

be able to convince Bob.

Soundness
If the Theorem is false, Alice should

not be able to convince Bob.

Interactive Zero-Knowledge Proofs
[Goldwasser-Micali-Rackoff’85, Babai-Moran’88]

Completeness
If the Theorem is true, Alice should

be able to convince Bob.

Soundness
If the Theorem is false, Alice should

not be able to convince Bob.

Interactive Zero-Knowledge Proofs
[Goldwasser-Micali-Rackoff’85, Babai-Moran’88]

Completeness
If the Theorem is true, Alice should

be able to convince Bob.

Soundness
If the Theorem is false, Alice should

not be able to convince Bob.

1 Interaction

accept

Interactive Zero-Knowledge Proofs
[Goldwasser-Micali-Rackoff’85, Babai-Moran’88]

Completeness
If the Theorem is true, Alice should

be able to convince Bob.

Soundness
If the Theorem is false, Alice has a

small chance to convince Bob.

2 Soundness error

1 Interaction

accept/reject

Interactive Zero-Knowledge Proofs
[Goldwasser-Micali-Rackoff’85]

Completeness
If the Theorem is true, Alice should

be able to convince Bob.

Soundness
If the Theorem is false, Alice has a

small chance to convince Bob.

Zero-Knowledge
Interaction reveals nothing beyond

the validity of the proposition.

Interactive Zero-Knowledge Proofs
[Goldwasser-Micali-Rackoff’85]

Completeness
If the Theorem is true, Alice should

be able to convince Bob.

Soundness
If the Theorem is false, Alice has a

small chance to convince Bob.

If the proposition is true, Bob

might as well have generated

the interaction on their own.

Graph 3-Coloring

Given a graph, can the vertices be colored such that no

two vertices connected by an edge have the same color?

Interactive Zero-Knowledge Proofs

3 colorable

Graph 3-Coloring

Given a graph, can the vertices be colored such that no

two vertices connected by an edge have the same color?

Interactive Zero-Knowledge Proofs

3 colorable

Graph 3-Coloring

Given a graph, can the vertices be colored such that no

two vertices connected by an edge have the same color?

Interactive Zero-Knowledge Proofs

3 colorable

Graph 3-Coloring

Given a graph, can the vertices be colored such that no

two vertices connected by an edge have the same color?

Interactive Zero-Knowledge Proofs

Not 3 colorable

3 colorable

Graph 3-Coloring

Given a graph, can the vertices be colored such that no

two vertices connected by an edge have the same color?

Interactive Zero-Knowledge Proofs

Not 3 colorable

Graph 3-Coloring

Given a graph, can the vertices be colored such that no

two vertices connected by an edge have the same color?

Known to be NP-Complete
Hardest among the set of problems NP, whose solutions are easy

to verify.

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Alice wants to convince Bob that the graph is 3-

colorable.

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Bob learns the coloring, not zero-knowledge.

Interactive Zero-Knowledge Proofs

Digital Analogue of Locked Boxes: Commitment schemes

Interactive Zero-Knowledge Proofs

Digital Analogue of Locked Boxes: Commitment schemes

Interactive Zero-Knowledge Proofs

commit

lock

Digital Analogue of Locked Boxes: Commitment schemes

Interactive Zero-Knowledge Proofs

commit

lock

+
decommit

unlock

Digital Analogue of Locked Boxes: Commitment schemes

hiding

Interactive Zero-Knowledge Proofs

commit

lock

+
decommit

unlock

?

Digital Analogue of Locked Boxes: Commitment schemes

binding

hiding

Interactive Zero-Knowledge Proofs

commit

lock

+
decommit

unlock

?

+
decommit

unlock

+
decommit

unlock

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Lock/commit to the

vertex colors

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Bob checks if the

colors are different.

Interactive Zero-Knowledge Proofs

Bob checks if the

colors are different.

Bob only learns that vertices connected to the chosen

edge have different colors.

Interactive Zero-Knowledge Proofs

Bob checks if the

colors are different.

If graph is not 3-colorable, Bob picks an edge with adjacent vertices of

the same color with probability
1

#Edges
Repeat for improved confidence.

Interactive Zero-Knowledge Proofs

Bob checks if the

colors are different.

Interactive Zero-Knowledge Proofs

Bob checks if the

colors are different.

Interactive Zero-Knowledge Proofs

Bob checks if the

colors are different.

Interactive Zero-Knowledge Proofs

Bob checks if the

colors are different.

Interactive Zero-Knowledge Proofs

Bob checks if the

colors are different.

Interactive Zero-Knowledge Proofs

Repeat

Interactive Zero-Knowledge Proofs

Repeat

Interactive Zero-Knowledge Proofs

For each repetition

randomly permute

the colors

Repeat

Interactive Zero-Knowledge Proofs

For each repetition

randomly permute

the colors

Repeat

Interactive Zero-Knowledge Proofs

For each repetition

randomly permute

the colors

In each repetition, sees two

(independently) random colors for chosen

edge.

Repeat

Interactive Zero-Knowledge Proofs

Prover requires randomness to

“hide” the coloring.

Randomness is an expensive

resource – we want to minimize

its usage.

For each repetition

randomly permute

the colors

Repeat

Interactive Zero-Knowledge Proofs

Prover requires randomness to

“hide” the coloring.

Randomness is an expensive

resource – we want to minimize

its usage.

For each repetition

randomly permute

the colors

Repeat

Interactive Zero-Knowledge Proofs

Prover requires randomness to

“hide” the coloring.

Randomness is an expensive

resource – we want to minimize

its usage.

For each repetition

randomly permute

the colors

Interactive Zero-Knowledge Proofs

Prover requires randomness to

“hide” the coloring.

Randomness is an expensive

resource – we want to minimize

its usage.

For each repetition

randomly permute

the colors

Can we construct zero knowledge proofs where the

prover doesn’t need any randomness?

Deterministic Prover Zero-Knowledge Proofs

[Goldreich-Oren’94]

Zero-knowledge requires the prover to

have access to randomness when

has an unbounded advice string.

Deterministic Prover Zero-Knowledge Proofs

[Goldreich-Oren’94]

Zero-knowledge requires the prover to

have access to randomness when

has an unbounded advice string.

Turing Machine

Deterministic Prover Zero-Knowledge Proofs

[Goldreich-Oren’94]

Zero-knowledge requires the prover to

have access to randomness when

has an unbounded advice string.

Turing Machine

Deterministic Prover Zero-Knowledge Proofs

[Goldreich-Oren’94]

Zero-knowledge requires the prover to

have access to randomness when

has an unbounded advice string.

input

Turing Machine

Deterministic Prover Zero-Knowledge Proofs

[Goldreich-Oren’94]

Zero-knowledge requires the prover to

have access to randomness when

has an unbounded advice string.

input

advice string

captures prior

knowledge of the world.

advice string

Turing Machine

Deterministic Prover Zero-Knowledge Proofs

[Goldreich-Oren’94]

Zero-knowledge requires the prover to

have access to randomness when

has an unbounded advice string.

input

advice string

captures prior

knowledge of the world.

advice string

Turing Machine

Deterministic Prover Zero-Knowledge Proofs

[Goldreich-Oren’94]

Zero-knowledge requires the prover to

have access to randomness when

has an unbounded advice string.

input

advice string

captures prior

knowledge of the world.

advice string

Turing Machine

Deterministic Prover Zero-Knowledge Proofs

[Goldreich-Oren’94]

Zero-knowledge requires the prover to

have access to randomness when

has an unbounded advice string.

input

For every bound on ‘s advice string,

we construct a deterministic prover zero-

knowledge protocol.

Theorem

advice string

captures prior

knowledge of the world.

advice string

Deterministic Prover Zero-Knowledge Proofs

[Goldreich-Oren’94]

Zero-knowledge with deterministic

impossible.

Focus of this work

Interactive Zero-

Knowledge Proofs

Secure

Computation

Focus of this work

Interactive Zero-

Knowledge Proofs

Secure

Computation

Is prover randomness essential

for zero-knowledge?

Focus of this work

Interactive Zero-

Knowledge Proofs

Secure

Computation

Is prover randomness essential

for zero-knowledge?

Secure Computation

𝑥1

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑥1

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑥1

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑦

𝑦

𝑦

𝑦

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑦

𝑦

𝑦

𝑦

In Cryptography, the goal is to

minimize trust assumptions.

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

In Cryptography, the goal is to

minimize trust assumptions.

𝑥1

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑥1

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

In Cryptography, the goal is to

minimize trust assumptions.

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

Run a protocol by exchanging

messages.

𝑥1

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

Run a protocol by exchanging

messages.

𝑥1

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

Run a protocol by exchanging

messages.

𝑥1

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑦

𝑦

𝑦 𝑦

Run a protocol by exchanging

messages.

𝑥1

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑦

𝑦

𝑦 𝑦

Misbehaving participants

should not learn anything

beyond the output of the

function.𝑥1

[Yao’86, Goldreich-Micali-Wigderson’87]

Secure Computation Interaction

𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑦

𝑦

𝑦 𝑦

Misbehaving participants

should not learn anything

beyond the output of the

function.

A round constitutes of

every participant sending

a message.

𝑥1

Network Latency

Network Latency

Network Latency

To minimize the effect of network latency, minimize the number

of communication rounds.

Known bounds for interaction

Impossible

[Garg-Mukherjee-Pandey-Polychroniadou’16]

Known bounds for interaction

Impossible

Is the lower bound tight?

?

[Garg-Mukherjee-Pandey-Polychroniadou’16]

Round Optimal Protocol

Impossible

There are four round protocols under optimal assumptions.

Theorem

Focus of this work

Interactive Zero-

Knowledge Proofs

Secure

Computation

Is prover randomness essential

for zero-knowledge?

Focus of this work

Interactive Zero-

Knowledge Proofs

Secure

Computation

Is prover randomness essential

for zero-knowledge?

Can we construct secure computation

protocols in minimal rounds from

minimal assumptions?

Protocols

Protocols on the Internet

Protocols on the Internet

Protocols on the Internet

Existing protocols can no longer

be proven secure when multiple

concurrent copies are running.

In fact, impossible to construct

secure protocols in this setting

without trust assumption.

Protocols on the Internet

Existing protocols can no longer

be proven secure when multiple

concurrent copies are running.

In fact, impossible to construct

secure protocols in this setting

without trust assumption.

Circumventing Impossibilities

cool things we

want

Things allowed by

cryptography

Circumventing Impossibilities

cool things we

want

Things allowed by

cryptography

Protocols on the internet

Circumventing Impossibilities

cool things we

want

Things allowed by

cryptography

Relax trust

assumptions.

Protocols on the internet

Global Ledger
Ledger

Global Ledger

data

Ledger

Anybody can post data to

the ledger.

Global Ledger

data

data

Ledger

Anybody can post data to

the ledger.

Ledger publicly

accessible.

Global Ledger

data

data

Ledger

Anybody can post data to

the ledger.

Ledger publicly

accessible.

Posted data is permanent.

Global Ledger

data

data

Ledger

Anybody can post data to

the ledger.

Ledger publicly

accessible.

Posted data is permanent.

Instantiated via Blockchains.
Decentralized trust assumption.

Blockchain

data

data

Ledger

Anybody can post data to

the ledger.

Ledger publicly

accessible.

Posted data is permanent.

Instantiated via Blockchains.
Decentralized trust assumption.

Protocols on the Internet – Blockchain model

Ledger
Each participant has access to the

blockchain.

We construct new protocols

in the blockchain model that

are secure when multiple

concurrent instances are run.

Theorem

Zero-Knowledge in the Blockchain Model

Ledger

Zero-Knowledge in the Blockchain Model

Ledger

Proof techniques for existing

protocols do not work in the

blockchain model.

Theorem

Zero-Knowledge in the Blockchain Model

Ledger

Proof techniques for existing

protocols do not work in the

blockchain model.

We construct new zero-knowledge

protocols in the blockchain model.

Theorem

Theorem

Focus of this work

Interactive Zero-

Knowledge Proofs

Secure

Computation

Is prover randomness essential

for zero-knowledge?

Can we construct secure computation

protocols in minimal rounds from

minimal assumptions?

Focus of this work

Interactive Zero-

Knowledge Proofs

Secure

Computation

Is prover randomness essential

for zero-knowledge?

Can we construct secure computation

protocols in minimal rounds from

minimal assumptions?

Can we make reasonable relaxations to the trust assumptions in order to

circumvent barriers in secure computation?

Necessity of Randomness in Zero-knowledge

Founding Secure Computation on Blockchains

Round Optimal Secure Computation

Necessity of Randomness in Zero-knowledge

Founding Secure Computation on Blockchains

Round Optimal Secure Computation

Characterizing Deterministic
Prover Zero-Knowledge
[Bitansky-C’20]

Zero Knowledge

Prover (𝑥, 𝑤) Verifier (𝑥)

$ $ $ $ $ $

[Goldwasser-Micali-Rackoff’85]

wants to prove 𝑥 ∈ ℒ for some NP language ℒ.

Zero Knowledge

Prover (𝑥, 𝑤) Verifier (𝑥)

$ $ $ $ $ $

[Goldwasser-Micali-Rackoff’85]

wants to prove 𝑥 ∈ ℒ for some NP language ℒ.

There is a witness 𝑤 of membership that can be verified easily.

Zero Knowledge

Prover (𝑥, 𝑤) Verifier (𝑥)

$ $ $ $ $ $

Completeness: ∀𝑥 ∈ ℒ, verifier accepts.

(Computational) Soundness

Zero Knowledge

[Goldwasser-Micali-Rackoff’85]

Zero Knowledge

Prover (𝑥, 𝑤) Verifier (𝑥)

$ $ $ $ $ $

Completeness

(Computational) Soundness: ∀𝑥 ∉ ℒ, no PPT prover can make the verifier accept.

Zero Knowledge

[Goldwasser-Micali-Rackoff’85]

Zero Knowledge

Prover (𝑥, 𝑤) Verifier (𝑥)

$ $ $ $ $ $

Completeness

(Computational) Soundness

Zero Knowledge: ∀ Verifiers ∃ Simulator

[Goldwasser-Micali-Rackoff’85]

Zero Knowledge

Prover (𝑥, 𝑤) Verifier (𝑥)

$ $ $ $ $ $

$ $ $ $ $ $

Prover (𝑥, 𝑤)

Verifier’s view in an execution with the prover

Completeness

(Computational) Soundness

Zero Knowledge: ∀ Verifiers ∃ Simulator

[Goldwasser-Micali-Rackoff’85]

Zero Knowledge

Prover (𝑥, 𝑤) Verifier (𝑥)

$ $ $ $ $ $

Completeness

(Computational) Soundness

Zero Knowledge: ∀ Verifiers ∃ Simulator

$ $ $ $ $ $

Verifier’s view in an execution with the prover

[Goldwasser-Micali-Rackoff’85]

Zero Knowledge

Prover (𝑥, 𝑤) Verifier (𝑥)

$ $ $ $ $ $

Completeness

(Computational) Soundness

Zero Knowledge: ∀ Verifiers ∃ Simulator

$ $ $ $ $ $$ $ $ $ $ $

Verifier’s view in an execution with the prover Simulator’s output on input 𝑥

≈

[Goldwasser-Micali-Rackoff’85]

Many Flavors of Zero-Knowledge (ZK)

∀ Verifier

∃ Simulator

GMR ZK

View (𝑥)≈

Many Flavors of Zero-Knowledge (ZK)

∀ Verifier

∃ Simulator

GMR ZK Auxiliary-input ZK

View (𝑥)≈

∀ Verifier

∃ Simulator

∀ aux-IP 𝑧 ∈ 0,1 ∗

View (𝑥, 𝑧)≈

Auxiliary input captures protocol

context for the verifier.

Many Flavors of Zero-Knowledge (ZK)

∀ Verifier

∃ Simulator

GMR ZK Auxiliary-input ZK Black-box ZK

View (𝑥)≈

∀ Verifier

∃ Simulator

∀ aux-IP 𝑧 ∈ 0,1 ∗

View (𝑥, 𝑧)≈

∃ Simulator

∀ Verifier

View (𝑥)≈

Many Flavors of Zero-Knowledge (ZK)

∀ Verifier

∃ Simulator

GMR ZK Auxiliary-input ZK Black-box ZK

View (𝑥)≈

∀ Verifier

∃ Simulator

∀ aux-IP 𝑧 ∈ 0,1 ∗

View (𝑥, 𝑧)≈

∃ Simulator

∀ Verifier

View (𝑥)≈

Restrictions on the simulator

Deterministic Prover Zero Knowledge (DPZK)

Deterministic Prover (𝑥, 𝑤) Verifier (𝑥)

Is prover randomness essential for zero knowledge?

Limitations of DPZK

∀ Verifier

∃ Simulator

GMR ZK Auxiliary-input ZK Black-box ZK

View (𝑥)≈

∀ Verifier

∃ Simulator

∀ aux-IP 𝑧 ∈ 0,1 ∗

View (𝑥, 𝑧)≈

∃ Simulator

∀ Verifier

View (𝑥)≈

[Goldreich-Oren’94]

Limitations of DPZK

∀ Verifier

∃ Simulator

GMR ZK Auxiliary-input ZK Black-box ZK

View (𝑥)≈

∀ Verifier

∃ Simulator

∀ aux-IP 𝑧 ∈ 0,1 ∗

View (𝑥, 𝑧)≈

∃ Simulator

∀ Verifier

View (𝑥)≈

[Goldreich-Oren’94]

Prior Work

[Faonio-Nielsen-Venturi’17]

Witness encryption for ℒ ⟹ Honest-verifier DPZK for ℒ

Hash proof system for ℒ ⟹ Honest-verifier DPZK proofs for ℒ

[Dahari-Lindell’20]

Doubly enhanced injective OWFs ⟹ Honest-verifier DPZK proofs for NP

Inefficient honest prover.

Malicious-verifier DPZK for languages that have an entropy guarantee from
witnesses.

Our Results

∀ Verifier

∃ Simulator

GMR ZK Auxiliary-input ZK Black-box ZK

View (𝑥)≈

∀ Verifier

∃ Simulator

∀ aux-IP 𝑧 ∈ 0,1 ∗

View (𝑥, 𝑧)≈

∃ Simulator

∀ Verifier

View (𝑥)≈

Our Results

∀ Verifier

∃ Simulator

GMR ZK Auxiliary-input ZK Black-box ZK

View (𝑥)≈

∀ Verifier

∃ Simulator

∀ aux-IP 𝑧 ∈ 0,1 ∗

View (𝑥, 𝑧)≈

∃ Simulator

∀ Verifier

View (𝑥)≈

𝑏-Bounded auxiliary-input ZK

∀ Verifier

∃ Simulator

∀ aux-IP 𝑧 ∈ 0,1 𝑏

View (𝑥, 𝑧)≈

Our Results

∀ Verifier

∃ Simulator

GMR ZK Auxiliary-input ZK Black-box ZK

View (𝑥)≈

∀ Verifier

∃ Simulator

∀ aux-IP 𝑧 ∈ 0,1 ∗

View (𝑥, 𝑧)≈

∃ Simulator

∀ Verifier

View (𝑥)≈

𝑏-Bounded auxiliary-input ZK

∀ Verifier

∃ Simulator

∀ aux-IP 𝑧 ∈ 0,1 𝑏

View (𝑥, 𝑧)≈

Our Results

Assuming NIWIs + sub-exponentially secure iO + OWF + sub-exponentially secure keyless CRHF,

there exist two message DPZK arguments for all of NP against

bounded auxiliary-input verifiers.

NIWI – Non interactive witness indistinguishable proofs

iO – Indistinguishability obfuscation

OWF – One-way functions

CRHF – Collision resistant hash functions

Our Results

Assuming NIWIs + sub-exponentially secure iO + OWF + sub-exponentially secure keyless CRHF,

there exist two message DPZK arguments for all of NP against

bounded auxiliary-input verifiers.

Any DPZK argument for a language ℒ implies a witness
encryption for ℒ.

Honest Verifier DPZK
[Faonio-Nielsen-Venturi’17]

Honest Verifier DPZK

Witness Encryption for ℒ

WE.Enc
𝑥

𝑚
ct𝑥,𝑚 WE.Dec

𝑤
𝑚/⊥

ct𝑥,𝑚

Deterministic Decryption

[Faonio-Nielsen-Venturi’17]

Honest Verifier DPZK

Witness Encryption for ℒ

WE.Enc
𝑥

𝑚
ct𝑥,𝑚 WE.Dec

𝑤
𝑚/⊥

ct𝑥,𝑚

For 𝑥,𝑤 ∈ Relℒ

WE.Dec
𝑤

𝑚
ct𝑥,𝑚

Correctness

Deterministic Decryption

[Faonio-Nielsen-Venturi’17]

Honest Verifier DPZK

Witness Encryption for ℒ

WE.Enc
𝑥

𝑚
ct𝑥,𝑚 WE.Dec

𝑤
𝑚/⊥

ct𝑥,𝑚

For 𝑥,𝑤 ∈ Relℒ For 𝑥 ∉ ℒ

ct𝑥,𝑚WE.Dec
𝑤

𝑚
ct𝑥,𝑚

Correctness Security

Deterministic Decryption

[Faonio-Nielsen-Venturi’17]

?

Honest Verifier DPZK
[Faonio-Nielsen-Venturi’17]

Honest Verifier DPZK

Deterministic Prover (𝑥, 𝑤) Verifier (𝑥)

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)ct𝑥,𝑢

[Faonio-Nielsen-Venturi’17]

Honest Verifier DPZK

Deterministic Prover (𝑥, 𝑤) Verifier (𝑥)

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

෤𝑢 ≔ WE.Dec(ct𝑥,𝑢, 𝑤)

ct𝑥,𝑢

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

[Faonio-Nielsen-Venturi’17]

Honest Verifier DPZK

Deterministic Prover (𝑥, 𝑤) Verifier (𝑥)

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

෤𝑢 ≔ WE.Dec(ct𝑥,𝑢, 𝑤)

ct𝑥,𝑢

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

Completeness: From correctness of WE.

[Faonio-Nielsen-Venturi’17]

Cheating Prover (𝑥) Verifier (𝑥)

ct𝑥,𝑢

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

Honest Verifier DPZK

Completeness

Soundness: From WE security when 𝑥 ∉ ℒ

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

[Faonio-Nielsen-Venturi’17]

Cheating Prover (𝑥) Verifier (𝑥)

?

Output 1 iff 𝑢 = ෤𝑢

Honest Verifier DPZK

Completeness

Soundness: From WE security when 𝑥 ∉ ℒ

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

[Faonio-Nielsen-Venturi’17]

ct𝑥,𝑢

Simulator (𝑥)

Honest Verifier DPZK

Verifier (𝑥)

ct𝑥,𝑢

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

Completeness

Soundness

Honest Verifier Zero Knowledge:

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

[Faonio-Nielsen-Venturi’17]

$ $ $ $ $ $

Simulator (𝑥)

Honest Verifier DPZK

Verifier (𝑥)

ct𝑥,𝑢

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

Completeness

Soundness

Honest Verifier Zero Knowledge: Simulator knows 𝑢

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

[Faonio-Nielsen-Venturi’17]

$ $ $ $ $ $

Explainable Verifier DPZK

Explainable Verifier

There exist honest verifier coins that explains verifier

messages as honest messages.

Explainable Verifier DPZK

Explainable Verifier

There exist honest verifier coins that explains verifier

messages as honest messages.

Simulator no longer “knows’’ the message that an explainable verifier encrypts

via the Witness Encryption.
Aux-I/P DPZK for explainable verifiers also ruled out by [Goldreich-Oren’94]

Explainable Verifier DPZK

Explainable Verifier

There exist honest verifier coins that explains verifier

messages as honest messages.

Simulator no longer “knows’’ the message that an explainable verifier encrypts

via the Witness Encryption.
Aux-I/P DPZK for explainable verifiers also ruled out by [Goldreich-Oren’94]

Idea: Use additional trapdoor statement that only the simulator can use.

Malicious Verifier DPZK

Malicious Verifier

DPZK

Explainable

Verifier DPZK

Verifier proves honest behavior

Explainable Verifier DPZK

Deterministic Prover (𝑥, 𝑤) Verifier (𝑥)

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

෤𝑢 ≔ WE.Dec(ct𝑥,𝑢, 𝑤)

ct𝑥,𝑢 ෥ct𝑅,𝑢 𝑅

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

size ≤ 𝑏

includes auxiliary input

Explainable Verifier DPZK

Deterministic Prover (𝑥, 𝑤) Verifier (𝑥)

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

෤𝑢 ≔ WE.Dec(ct𝑥,𝑢, 𝑤)

ct𝑥,𝑢 ෥ct𝑅,𝑢 𝑅

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

size ≤ 𝑏

includes auxiliary input

𝑅 ⟵ 0,1 𝑁

෥ct𝑅,𝑢 ⟵ ෫WE.Enc𝑅(𝑢)

𝑁 ≫ 𝑏

Statement:

Witness:

𝑅
𝑁

Turing

Machine

𝑏

TM

𝑅

Explainable Verifier DPZK

Deterministic Prover (𝑥, 𝑤) Verifier (𝑥)

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

෤𝑢 ≔ WE.Dec(ct𝑥,𝑢, 𝑤)

ct𝑥,𝑢 ෥ct𝑅,𝑢 𝑅

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

size ≤ 𝑏

includes auxiliary input

𝑅 ⟵ 0,1 𝑁

෥ct𝑅,𝑢 ⟵ ෫WE.Enc𝑅(𝑢)

𝑁 ≫ 𝑏

Statement:

Witness:

𝑅
𝑁

Turing

Machine

𝑏

TM

𝑅

Explainable Verifier DPZK

Deterministic Prover (𝑥, 𝑤) Verifier (𝑥)

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

෤𝑢 ≔ WE.Dec(ct𝑥,𝑢, 𝑤)

ct𝑥,𝑢 ෥ct𝑅,𝑢 𝑅

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

size ≤ 𝑏

includes auxiliary input

𝑅 ⟵ 0,1 𝑁

෥ct𝑅,𝑢 ⟵ ෫WE.Enc𝑅(𝑢)

𝑁 ≫ 𝑏

Completeness: Same as HVZK
Statement:

Witness:

𝑅
𝑁

Turing

Machine

𝑏

TM

𝑅

Explainable Verifier DPZK

Cheating Prover (𝑥, 𝑤) Verifier (𝑥)

෤𝑢 ≔ WE.Dec(ct𝑥,𝑢, 𝑤)

ct𝑥,𝑢 ෥ct𝑅,𝑢 𝑅

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

size ≤ 𝑏

includes auxiliary input

𝑁 ≫ 𝑏

Completeness

Soundness: w.h.p. no short machine

exists that can output a random 𝑅

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)
𝑅 ⟵ 0,1 𝑁

෥ct𝑅,𝑢 ⟵ ෫WE.Enc𝑅(𝑢)

Statement:

Witness:

𝑅
𝑁

Turing

Machine

𝑏

TM

𝑅

Explainable Verifier DPZK

Simulator (𝑥) Verifier (𝑥)

ct𝑥,𝑢 ෥ct𝑅,𝑢 𝑅

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

size ≤ 𝑏

includes auxiliary input

𝑁 ≫ 𝑏

Completeness

Soundness

Zero Knowledge:

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)
𝑅 ⟵ 0,1 𝑁

෥ct𝑅,𝑢 ⟵ ෫WE.Enc𝑅(𝑢)

Statement:

Witness:

𝑅
𝑁

Turing

Machine

𝑏

TM

𝑅

Explainable Verifier DPZK

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

𝑁 ≫ 𝑏

Completeness

Soundness

Zero Knowledge: Simulator uses the

verifier’s code as witness; verifier’s

randomness simulated by a PRG.

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)
𝑅 ⟵ 0,1 𝑁

෥ct𝑅,𝑢 ⟵ ෫WE.Enc𝑅(𝑢)

Verifier (𝑥)

size ≤ 𝑏

includes auxiliary input

Statement:

Witness:

𝑅
𝑁

Turing

Machine

𝑏

TM

𝑅

Simulator (𝑥)

ct𝑥,𝑢 ෥ct𝑅,𝑢 𝑅

Explainable Verifier DPZK

Simulator (𝑥) Verifier (𝑥)

෤𝑢 ≔ ෫WE.Dec(෥ct𝑅,𝑢 ,)

ct𝑥,𝑢 ෥ct𝑅,𝑢 𝑅

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

size ≤ 𝑏

includes auxiliary input

𝑁 ≫ 𝑏

Completeness

Soundness

Zero Knowledge: Simulator uses the

verifier’s code as witness; verifier’s

randomness simulated by a PRG.

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)
𝑅 ⟵ 0,1 𝑁

෥ct𝑅,𝑢 ⟵ ෫WE.Enc𝑅(𝑢)

Statement:

Witness:

𝑅
𝑁

Turing

Machine

𝑏

TM

𝑅

Explainable Verifier DPZK

Deterministic Prover (𝑥, 𝑤) Verifier (𝑥)

𝑢 ⟵ 0,1 𝑛

ct𝑥,𝑢 ⟵ WE.Enc𝑥(𝑢)

෤𝑢 ≔ WE.Dec(ct𝑥,𝑢, 𝑤)

ct𝑥,𝑢 ෥ct𝑅,𝑢 𝑅

෤𝑢

Output 1 iff 𝑢 = ෤𝑢

size ≤ 𝑏

includes auxiliary input

𝑅 ⟵ 0,1 𝑁

෥ct𝑅,𝑢 ⟵ ෫WE.Enc𝑅(𝑢)

𝑁 ≫ 𝑏

Necessity of Randomness in Zero-knowledge

Founding Secure Computation on Blockchains

Round Optimal Secure Computation

Founding Secure Computation on
Blockchains
[C-Goyal-Jain’19]

Blockchain Model

Blockchain Ledger

Δ

Blockchain Model

Blockchain Ledger

𝑚𝐴

Δ

Blockchain Model

Blockchain Ledger

𝑚𝐴

Δ

10

Blockchain Model

Blockchain Ledger

𝑚𝐴

Δ

Blockchain Model

Blockchain Ledger

𝑚𝐴 𝑚𝐵

Δ

Blockchain Model

Blockchain Ledger

𝑚𝐴 𝑚𝐵 𝑚𝐶

Δ

Blockchain Model

Blockchain Ledger

Δ

𝑚𝐴 𝑚𝐵 𝑚𝐶𝑖 + 1

Blockchain Model

Blockchain Ledger

Δ

𝑚𝐴 𝑚𝐵 𝑚𝐶𝑖 + 1

Blockchain Model

Blockchain Ledger

Δ

𝑚𝐴 𝑚𝐵 𝑚𝐶𝑖 + 1

All parties have a consistent view
of the blockchain

A message sent to the oracle is
guaranteed to appear on the next
block

Only the oracle can create blocks

Blockchain Model

Blockchain Ledger

Δ

𝑚𝐴 𝑚𝐵 𝑚𝐶𝑖 + 1

All parties have a consistent view
of the blockchain

A message sent to the oracle is
guaranteed to appear on the next
block

Only the oracle can create blocks

Blockchain Model

Blockchain Ledger

Δ

𝑚𝐴 𝑚𝐵 𝑚𝐶𝑖 + 1

All parties have a consistent view
of the blockchain

A message sent to the oracle is
guaranteed to appear on the next
block

Only the oracle can create blocks

Blockchains and Protocols

Blockchain Ledger

is blockchain-active

Blockchains and Protocols

Blockchain Ledger Blockchain Ledger

is blockchain-active
Protocol is in the blockchain

hybrid model.

Black-box Zero-Knowledge

Black-box ZK

∃ Simulator

∀ Verifier

View (𝑥)≈

Black-box Zero-Knowledge

Black-box ZK

∃ Simulator

∀ Verifier

View (𝑥)≈

Black-box Zero-Knowledge

Black-box ZK

∃ Simulator

∀ Verifier

View (𝑥)≈

Black-box Zero-Knowledge

Black-box ZK

∃ Simulator

∀ Verifier

View (𝑥)≈

Black-box Zero-Knowledge

Black-box ZK

∃ Simulator

∀ Verifier

View (𝑥)≈

Black-box simulator works by

rewinding the cheating verifier.

Black-box Zero-Knowledge

Black-box ZK

∃ Simulator

∀ Verifier

View (𝑥)≈

Black-box simulator works by

rewinding the cheating verifier.

Black-box Zero-Knowledge

Black-box ZK

∃ Simulator

∀ Verifier

View (𝑥)≈

Black-box simulator works by

rewinding the cheating verifier.

Black-box Zero-Knowledge

Black-box ZK

∃ Simulator

∀ Verifier

View (𝑥)≈

Black-box simulator works by

rewinding the cheating verifier.

Black-box Zero-Knowledge

Black-box ZK

∃ Simulator

∀ Verifier

View (𝑥)≈

Black-box simulator works by

rewinding the cheating verifier.

Black-box Zero-Knowledge

Black-box ZK

∃ Simulator

∀ Verifier

View (𝑥)≈

Black-box simulator works by

rewinding the cheating verifier.

Black-box ZK Impossible with Blockchain-
active verifier

prover verifier

Blockchain Ledger

Prevent Simulator from

rewinding the verifier.

Black-box simulator works by

rewinding the cheating verifier.

Black-box ZK Impossible with Blockchain-
active verifier

prover verifier

Blockchain Ledger

Prevent Simulator from

rewinding the verifier.

Black-box simulator works by

rewinding the cheating verifier.

Black-box ZK Impossible with Blockchain-
active verifier

prover verifier

Blockchain Ledger

Prevent Simulator from

rewinding the verifier.

Black-box simulator works by

rewinding the cheating verifier.

Black-box ZK Impossible with Blockchain-
active verifier

prover verifier

Blockchain Ledger

Prevent Simulator from

rewinding the verifier.

Black-box simulator works by

rewinding the cheating verifier.

Black-box ZK Impossible with Blockchain-
active verifier

prover verifier

Blockchain Ledger

Check if different

transcript for the

same session.

Prevent Simulator from

rewinding the verifier.

Black-box simulator works by

rewinding the cheating verifier.

Black-box ZK Impossible with Blockchain-
active verifier

prover verifier

Blockchain Ledger

Check if different

transcript for the

same session.

Prevent Simulator from

rewinding the verifier.

Black-box simulator works by

rewinding the cheating verifier.

Black-box ZK Impossible with Blockchain-
active verifier

simulator verifier

Blockchain Ledger

Check if different

transcript for the

same session.

Prevent Simulator from

rewinding the verifier.

Black-box simulator works by

rewinding the cheating verifier.

Secure Computation

Security

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑥1

𝑥2 𝑥3

𝑥4

𝑦

𝑦

𝑦 𝑦

Security

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑥1

𝑥2 𝑥3

𝑥4

𝑦

𝑦

𝑦 𝑦

real world

Security

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑥1

𝑥2 𝑥3

𝑥4

𝑦

𝑦

𝑦 𝑦

𝑥1 𝑥2 𝑥3 𝑥4𝑦 𝑦 𝑦 𝑦

𝑓

real world ideal world

Security

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑥1

𝑥2 𝑥3

𝑥4

𝑦

𝑦

𝑦 𝑦

𝑥1 𝑥2 𝑥3 𝑥4𝑦 𝑦 𝑦 𝑦

𝑓

real world ideal world

Security

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑥1

𝑥2 𝑥3

𝑥4

𝑦

𝑦

𝑦 𝑦

𝑥1 𝑥2 𝑥3 𝑥4𝑦 𝑦 𝑦 𝑦

𝑓

real world ideal world

Black-box Simulator

Security

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑥1

𝑥2 𝑥3

𝑥4

𝑦

𝑦

𝑦 𝑦

𝑥1 𝑥2 𝑥3 𝑥4𝑦 𝑦 𝑦 𝑦

𝑓

real world ideal world

Black-box Simulator

Black-box simulator works by

rewinding the misbehaving

participants.

Protocols on the internet

Protocols on the internet

Protocols on the internet

Protocols on the internet

Arbitrary interleaving

of protocol messages.

Protocols on the internet

Arbitrary interleaving

of protocol messages.

simulator

Protocols on the internet

Arbitrary interleaving

of protocol messages.

simulator

Protocols on the internet

Arbitrary interleaving

of protocol messages.

simulator

Protocols on the internet

Arbitrary interleaving

of protocol messages.

simulator

Protocols on the internet

Arbitrary interleaving

of protocol messages.

simulator

Protocols on the internet

Arbitrary interleaving

of protocol messages.

simulator

Protocols on the internet

Arbitrary interleaving

of protocol messages.

simulator

Protocols on the internet

Arbitrary interleaving

of protocol messages.

can change their protocol inputs on the right

on being rewound.

Protocols on the internet

Arbitrary interleaving

of protocol messages.

can change their protocol inputs on the right

on being rewound.

Black-box impossible [Lindell’04]

Simulator unable to rewind

Rewinding Issues

Black-box ZK

with blockchain

active verifiers.

Concurrent self

composition of

protocols

Extractable Commitments Blockchain Hybrid
Model

Extractable Commitments Blockchain Hybrid
Model

Digital Analogue of Locked Boxes: Commitment schemes

binding

hiding
commit

lock

+
decommit

unlock

?

+
decommit

unlock

+
decommit

unlock

Extractable Commitments Blockchain Hybrid
Model

Digital Analogue of Locked Boxes: Commitment schemes

binding

hiding

+
decommit

unlock

?

+
decommit

unlock

+
decommit

unlock

commit

lock

Extractable Commitments Blockchain Hybrid
Model

commitment

Extractable Commitments Blockchain Hybrid
Model

commitment

Extractable Commitments Blockchain Hybrid
Model
[Prabhakaran-Rosen-Sahai’02]

init

Extractable Commitments Blockchain Hybrid
Model
[Prabhakaran-Rosen-Sahai’02]

slots

init

Extractable Commitments Blockchain Hybrid
Model
[Prabhakaran-Rosen-Sahai’02]

slots

init

Extractable Commitments Blockchain Hybrid
Model
[Prabhakaran-Rosen-Sahai’02]

slots

init

Extractable Commitments Blockchain Hybrid
Model
[Prabhakaran-Rosen-Sahai’02]

slots

init

Extractable Commitments Blockchain Hybrid
Model
[Prabhakaran-Rosen-Sahai’02]

If the simulator can rewind in any one of

the slots, then the simulator can extract the

committed value.

Extractable Commitments Blockchain Hybrid
Model

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Use the blockchain as

a coarse timer.

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Blockchain Ledger

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

quits protocol if timer runs out.

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

quits protocol if timer runs out.

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

quits protocol if timer runs out.

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Commitment valid only if timer

doesn’t run out.

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

quits protocol if timer runs out.

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Commitment valid only if timer

doesn’t run out.

Example: 4 slots, time-out 𝑘 = 3

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

quits protocol if timer runs out.

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Commitment valid only if timer

doesn’t run out.

Example: 4 slots, time-out 𝑘 = 3

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

quits protocol if timer runs out.

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Commitment valid only if timer

doesn’t run out.

Example: 4 slots, time-out 𝑘 = 3

Bad slot

Use the blockchain as

a coarse timer.

𝑘 𝑘

Time-out 𝑘

quits protocol if timer runs out.

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Commitment valid only if timer

doesn’t run out.

Example: 4 slots, time-out 𝑘 = 3

Bad slot

Good slot

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Commitment valid only if timer

doesn’t run out.

Example: 4 slots, time-out 𝑘 = 3

Bad slot

Good slot

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Commitment valid only if timer

doesn’t run out.

Example: 4 slots, time-out 𝑘 = 3

Bad slot

Good slot

Simulator can rewind any

good slot to extract.

Blockchain Ledger

Extractable Commitments Blockchain Hybrid
Model

Commitment valid only if timer

doesn’t run out.

Example: 4 slots, time-out 𝑘 = 3

Bad slot

Good slot

Simulator can rewind any

good slot to extract.

Guaranteed if #slots > 𝑘

Results

Extractable

commitments in the

blockchain hybrid

model

Results

Extractable

commitments in the

blockchain hybrid

model

Zero-knowledge protocol in

the blockchain hybrid model.

Results

Extractable

commitments in the

blockchain hybrid

model

Zero-knowledge protocol in

the blockchain hybrid model.

Concurrent self-composition

protocol in the blockchain

hybrid model.

Results

Extractable

commitments in the

blockchain hybrid

model

Zero-knowledge protocol in

the blockchain hybrid model.

Concurrent self-composition

protocol in the blockchain

hybrid model.

Results

Extractable

commitments in the

blockchain hybrid

model

Zero-knowledge protocol in

the blockchain hybrid model.

Concurrent self-composition

protocol in the blockchain

hybrid model.

An extractable commitment slot is good if

no new session started during the slot.

New session only when new block created.

Results

Extractable

commitments in the

blockchain hybrid

model

Zero-knowledge protocol in

the blockchain hybrid model.

Concurrent self-composition

protocol in the blockchain

hybrid model.

Necessity of Randomness in Zero-knowledge

Founding Secure Computation on Blockchains

Round Optimal Secure Computation

Round Optimal Secure Multiparty
Computation from Minimal
Assumptions
[C-Ciampi-Goyal-Jain-Ostrovsky’20]

Known bounds for interaction

Impossible

?

[Garg-Mukherjee-Pandey-Polychroniadou’16]

Known bounds for interaction

Impossible

[Garg-Mukherjee-Pandey-Polychroniadou’16]

Four Round Protocols

[Ananth-C-Jain’17, Brakerski-Halevi-

Polychroniadou’17]

4 round protocol from subexponential

hardness assumptions.

[Badrinarayanan-Goyal-Jain-Kalai-

Khurana-Sahai’18, Halevi-Hazay-

Polychroniadou-Venkitasubramaniam’18]

4 round protocol from strong

number theoretic assumptions

Necessary and Sufficient Functionality for
Secure Computation

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

Necessary and Sufficient Functionality for
Secure Computation

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

Oblivious Transfer (OT) Functionality

Necessary and Sufficient Functionality for
Secure Computation

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

𝑏 𝑎0, 𝑎1

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

Oblivious Transfer (OT) Functionality

Necessary and Sufficient Functionality for
Secure Computation

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

𝑏 𝑎0, 𝑎1

𝑓(𝑥, 𝑦) ⊥

Oblivious Transfer (OT) Functionality

Necessary and Sufficient Functionality for
Secure Computation

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

𝑏 𝑎0, 𝑎1

𝑎𝑏 ⊥

Oblivious Transfer (OT) Functionality

Necessary and Sufficient Functionality for
Secure Computation

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

𝑏 𝑎0, 𝑎1

𝑎𝑏 ⊥

Oblivious Transfer (OT) Functionality

[Kilian’88]

Oblivious Transfer both necessary and sufficient for secure

computation.

𝑘 round OT ⇒ 𝑘 round Protocol ∀𝑘 ≥ 5

Known bounds for interaction

Impossible

[Garg-Mukherjee-Pandey-Polychroniadou’16, Benhamouda-Lin’18]

Four Round Protocol from Minimal Assumptions

There exist four round secure computation protocols assuming

four round oblivious transfer protocol.

Final Thoughts

Interactive Zero-

Knowledge Proofs

Secure

Computation

Is prover randomness essential

for zero-knowledge?

Can we construct secure computation

protocols in minimal rounds from

minimal assumptions?

Can we make reasonable relaxations to the trust assumptions in order to

circumvent barriers in secure computation?

Thanks to all my collaborators.

Thank you.
Questions?

