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Completeness
If the Theorem is true, Alice should 

be able to convince Bob. 

Soundness
If the Theorem is false, Alice has a 

small chance to convince Bob. 

Zero-Knowledge
Interaction reveals nothing beyond 

the validity of the proposition.



Interactive Zero-Knowledge Proofs
[Goldwasser-Micali-Rackoff’85]

Completeness
If the Theorem is true, Alice should 

be able to convince Bob. 

Soundness
If the Theorem is false, Alice has a 

small chance to convince Bob. 

If the proposition is true, Bob 

might as well have generated 

the interaction on their own. 
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Graph 3-Coloring

Given a graph, can the vertices be colored such that no 

two vertices connected by an edge have the same color?

Known to be NP-Complete
Hardest among the set of problems NP, whose solutions are easy 

to verify.
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Interactive Zero-Knowledge Proofs

Alice wants to convince Bob that the graph is 3-

colorable.
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Interactive Zero-Knowledge Proofs

Bob learns the coloring, not zero-knowledge. 
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Interactive Zero-Knowledge Proofs

Prover requires randomness to 

“hide” the coloring.

Randomness is an expensive 

resource – we want to minimize 

its usage. 

For each repetition 

randomly permute 

the colors 

Can we construct zero knowledge proofs where the 

prover doesn’t need any randomness?
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Turing Machine

Deterministic Prover Zero-Knowledge Proofs

[Goldreich-Oren’94]

Zero-knowledge requires the prover to 

have access to randomness when 

has an unbounded advice string. 

input

For every bound on       ‘s  advice string, 

we construct a deterministic prover zero-

knowledge protocol. 

Theorem

advice string

captures prior 

knowledge of the world.

advice string
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𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑦

𝑦

𝑦 𝑦

Misbehaving participants 

should not learn anything 

beyond the output of the 

function.𝑥1

[Yao’86, Goldreich-Micali-Wigderson’87]
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𝑥2 𝑥3

𝑥4𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑦

𝑦

𝑦 𝑦

Misbehaving participants 

should not learn anything 

beyond the output of the 

function.

A round constitutes of 

every participant sending 

a message.

𝑥1
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Network Latency

To minimize the effect of network latency, minimize the number 

of communication rounds. 
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Known bounds for interaction 

Impossible

Is the lower bound tight?

?

[Garg-Mukherjee-Pandey-Polychroniadou’16]



Round Optimal Protocol

Impossible

There are four round protocols under optimal assumptions. 

Theorem
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Circumventing Impossibilities

cool things we 

want

Things allowed by 

cryptography

Relax trust 

assumptions.

Protocols on the internet
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Anybody can post data to 

the ledger.

Ledger publicly 

accessible.

Posted data is permanent.

Instantiated via Blockchains.
Decentralized trust assumption.



Protocols on the Internet – Blockchain model 

Ledger
Each participant has access to the 

blockchain.

We construct new protocols 

in the blockchain model that 

are secure when multiple 

concurrent instances are run. 

Theorem
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We construct new zero-knowledge 

protocols in the blockchain model. 

Theorem

Theorem
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Interactive Zero-

Knowledge Proofs

Secure 

Computation

Is prover randomness essential 

for zero-knowledge?

Can we construct secure computation 

protocols in minimal rounds from 

minimal assumptions?

Can we make reasonable relaxations to the trust assumptions in order to 

circumvent barriers in secure computation?
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There is a witness 𝑤 of membership that can be verified easily.
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Completeness
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Zero Knowledge

[Goldwasser-Micali-Rackoff’85]
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Zero Knowledge

Prover (𝑥, 𝑤) Verifier (𝑥)

$ $ $ $ $ $

Completeness

(Computational) Soundness

Zero Knowledge: ∀ Verifiers       ∃ Simulator

$ $ $ $ $ $$ $ $ $ $ $

Verifier’s view in an execution with the prover Simulator’s output on input 𝑥

≈

[Goldwasser-Micali-Rackoff’85]
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∀ Verifier

∃ Simulator 

∀ aux-IP 𝑧 ∈ 0,1 ∗

View (𝑥, 𝑧)≈

∃ Simulator

∀ Verifier 

View (𝑥)≈

Restrictions on the simulator
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Prior Work

[Faonio-Nielsen-Venturi’17]

Witness encryption for ℒ ⟹ Honest-verifier DPZK for ℒ

Hash proof system for ℒ ⟹ Honest-verifier DPZK proofs for ℒ

[Dahari-Lindell’20]

Doubly enhanced injective OWFs ⟹ Honest-verifier DPZK proofs for NP

Inefficient honest prover.

Malicious-verifier DPZK for languages that have an entropy guarantee from 
witnesses.
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there exist two message DPZK arguments for all of NP against 

bounded auxiliary-input verifiers.

NIWI – Non interactive witness indistinguishable proofs

iO – Indistinguishability obfuscation

OWF – One-way functions 

CRHF – Collision resistant hash functions



Our Results

Assuming NIWIs + sub-exponentially secure iO + OWF + sub-exponentially secure keyless CRHF, 

there exist two message DPZK arguments for all of NP against 

bounded auxiliary-input verifiers.

Any DPZK argument for a language ℒ implies a witness 
encryption for ℒ.
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There exist honest verifier coins that explains verifier 

messages as honest messages. 

Simulator no longer “knows’’ the message that an explainable verifier encrypts 

via the Witness Encryption. 
Aux-I/P DPZK for explainable verifiers also ruled out by [Goldreich-Oren’94]

Idea: Use additional trapdoor statement that only the simulator can use.
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Founding Secure Computation on 
Blockchains
[C-Goyal-Jain’19]



Blockchain Model

Blockchain Ledger

Δ



Blockchain Model

Blockchain Ledger

𝑚𝐴

Δ



Blockchain Model

Blockchain Ledger

𝑚𝐴

Δ

10



Blockchain Model

Blockchain Ledger

𝑚𝐴

Δ



Blockchain Model

Blockchain Ledger

𝑚𝐴 𝑚𝐵

Δ



Blockchain Model

Blockchain Ledger

𝑚𝐴 𝑚𝐵 𝑚𝐶

Δ



Blockchain Model

Blockchain Ledger

Δ

𝑚𝐴 𝑚𝐵 𝑚𝐶𝑖 + 1



Blockchain Model

Blockchain Ledger

Δ

𝑚𝐴 𝑚𝐵 𝑚𝐶𝑖 + 1



Blockchain Model

Blockchain Ledger

Δ

𝑚𝐴 𝑚𝐵 𝑚𝐶𝑖 + 1

All parties have a consistent view 
of the blockchain

A message sent to the oracle is 
guaranteed to appear on the next 
block

Only the oracle can create blocks



Blockchain Model

Blockchain Ledger

Δ

𝑚𝐴 𝑚𝐵 𝑚𝐶𝑖 + 1

All parties have a consistent view 
of the blockchain

A message sent to the oracle is 
guaranteed to appear on the next 
block

Only the oracle can create blocks



Blockchain Model

Blockchain Ledger

Δ

𝑚𝐴 𝑚𝐵 𝑚𝐶𝑖 + 1

All parties have a consistent view 
of the blockchain

A message sent to the oracle is 
guaranteed to appear on the next 
block

Only the oracle can create blocks



Blockchains and Protocols

Blockchain Ledger

is blockchain-active



Blockchains and Protocols

Blockchain Ledger Blockchain Ledger

is blockchain-active
Protocol is in the blockchain 

hybrid model.
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Black-box ZK Impossible with Blockchain-
active verifier

simulator verifier

Blockchain Ledger

Check if different 

transcript for the 

same session.

Prevent Simulator from 

rewinding the verifier.

Black-box simulator works by 

rewinding the cheating verifier.
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Security 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑥1

𝑥2 𝑥3

𝑥4

𝑦

𝑦

𝑦 𝑦

𝑥1 𝑥2 𝑥3 𝑥4𝑦 𝑦 𝑦 𝑦

𝑓

real world ideal world 

Black-box Simulator

Black-box simulator works by 

rewinding the misbehaving 

participants.



Protocols on the internet



Protocols on the internet



Protocols on the internet



Protocols on the internet

Arbitrary interleaving 

of protocol messages.



Protocols on the internet

Arbitrary interleaving 

of protocol messages.

simulator



Protocols on the internet

Arbitrary interleaving 

of protocol messages.

simulator



Protocols on the internet

Arbitrary interleaving 

of protocol messages.

simulator



Protocols on the internet

Arbitrary interleaving 

of protocol messages.

simulator



Protocols on the internet

Arbitrary interleaving 

of protocol messages.

simulator



Protocols on the internet

Arbitrary interleaving 

of protocol messages.

simulator



Protocols on the internet

Arbitrary interleaving 

of protocol messages.

simulator



Protocols on the internet

Arbitrary interleaving 

of protocol messages.

can change their protocol inputs on the right 

on being rewound. 



Protocols on the internet

Arbitrary interleaving 

of protocol messages.

can change their protocol inputs on the right 

on being rewound. 

Black-box impossible [Lindell’04]



Simulator unable to rewind

Rewinding Issues

Black-box ZK 

with blockchain 

active verifiers. 

Concurrent self 

composition of 

protocols
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slots

init

Extractable Commitments Blockchain Hybrid 
Model
[Prabhakaran-Rosen-Sahai’02]

If the simulator      can rewind in any one of 

the slots, then the simulator can extract the 

committed value. 
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Commitment valid only if timer 

doesn’t run out. 

Example: 4 slots, time-out 𝑘 = 3

Bad slot

Good slot

Simulator       can rewind any 

good slot to extract. 

Guaranteed if #slots > 𝑘
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Extractable 

commitments in the 

blockchain hybrid 

model

Zero-knowledge protocol in 

the blockchain hybrid model.

Concurrent self-composition 

protocol in the blockchain 

hybrid model.



Necessity of Randomness in Zero-knowledge

Founding Secure Computation on Blockchains

Round Optimal Secure Computation 
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Impossible

[Garg-Mukherjee-Pandey-Polychroniadou’16]



Four Round Protocols

[Ananth-C-Jain’17, Brakerski-Halevi-

Polychroniadou’17]

4 round protocol from subexponential

hardness assumptions. 

[Badrinarayanan-Goyal-Jain-Kalai-

Khurana-Sahai’18, Halevi-Hazay-

Polychroniadou-Venkitasubramaniam’18]

4 round protocol from strong 

number theoretic assumptions
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Necessary and Sufficient Functionality for 
Secure Computation

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

𝑏 𝑎0, 𝑎1

𝑎𝑏 ⊥

Oblivious Transfer (OT) Functionality

[Kilian’88] 

Oblivious Transfer both necessary and sufficient for secure 

computation. 



𝑘 round OT ⇒ 𝑘 round Protocol ∀𝑘 ≥ 5

Known bounds for interaction 

Impossible

[Garg-Mukherjee-Pandey-Polychroniadou’16, Benhamouda-Lin’18]



Four Round Protocol from Minimal Assumptions

There exist four round secure computation protocols assuming 

four round oblivious transfer protocol. 



Final Thoughts

Interactive Zero-

Knowledge Proofs

Secure 

Computation

Is prover randomness essential 

for zero-knowledge?

Can we construct secure computation 

protocols in minimal rounds from 

minimal assumptions?

Can we make reasonable relaxations to the trust assumptions in order to 

circumvent barriers in secure computation?



Thanks to all my collaborators.















Thank you.
Questions?


