
Pursuing the Limits
of Cryptography

by

Arka Rai Choudhuri

Abstract

While cryptography has fairly ancient roots, modern cryptography has gone beyond the traditional
notion of encryption, allowing for new applications such as digital signatures, digital watermarking,
software obfuscation among others. While cryptography might seem like a magical tool for one’s
privacy needs, there are mathematical limitations to what cryptography can help us achieve. In
this thesis we focus on understanding what lies on the boundary of what cryptography enables. In
particular, we focus on three specific aspects that we elaborate on below. Common to these aspects
is that their focus lies in the design of protocols, wherein two or more participants interact towards
a pre-specified goal.

Necessity of Randomness in Zero-Knowledge Protocols. A Zero-Knowledge protocol consists
of an interaction between two parties, designated prover and verifier, where the prover is trying to
convince the verifier of the validity of a statement without revealing anything beyond the validity.
We study the necessity of randomness in such protocols, a natural question since true randomness
is a scarce resource. Prior works have shown that for most settings, the prover necessarily requires
randomness to run any such protocol. We show, somewhat surprisingly, that for many reasonable
settings, one can design protocols where a prover requires no randomness.

Minimizing Interaction in Secure Computation Protocols. The next part of the thesis focuses
on one of the most general notions in cryptography, that of secure computation. It allows mutually
distrusting parties to jointly compute a function over a network without revealing anything but
the output of the computation. Considering that these protocols are going to be run on high-
latency networks such as the internet, it is imperative that we design protocols suitable for this
environment. To this end, we want to minimize the interaction between participants of the protocol.
Prior works have established lower bounds on the number of times participants need to interact,
and in our work we show that these lower bounds are tight by constructing new protocols that are
optimal in their assumptions.

Circumventing Impossibilities with Blockchains. In some cases, there are desired usages of se-
cure computations protocols that are provably impossible on the (regular) Internet, i.e. existing
protocols can no longer be proven secure when multiple concurrent instances of the protocol are
executed. But we show that by assuming the existence of a secure blockchain, a minimal addi-
tional trust assumption, we can push past the boundaries of what is cryptographically possible by
constructing new protocols that are provably secure on the Internet.

i

Thesis Readers

Dr. Abhishek Jain (Primary Advisor)
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Matthew Green
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Susan Hohenberger
Research Professor
Department of Computer Science
Johns Hopkins University

ii

Acknowledgments

My list of people to thank is long, so please bear with me. First, and foremost, I must thank my
advisor Abhishek Jain. Despite my own self-doubts entering the program, making the transition
to doing theoretical cryptography became significantly easier with Abhishek as my advisor. His
excitement and drive for solving a wide array of cryptographic problems is something I would like
to emulate going forward, and it still amazes me at the number of problems Abhishek is working
on at any given time. My many long discussions with Abhishek, both technical and otherwise, have
played a pivotal role in shaping my own views on cryptography and research more broadly.

I would next like to thank Matthew Green. Coming into the PhD program, I was incredibly
naive with my perception of “theory” research, and was under the impression that Matt’s interests
would be too applied for my liking. Luckily for me I was able to work with Matt on a few projects,
and wish I had even a fraction of Matt’s theoretical grasp of ideas. Matt’s ability to come up with
theoretical grounded problems motivated by practice is incredible.

I would like to thank Susan Hohenberger for being a constant source of encouragement, and
agreeing to serve on my thesis committee.

I was fortunate to have been hosted over two summers by Krzysztof Pietrzak at IST Austria, and
Nir Bitansky at Tel Aviv. Krzysztof, and the entire lab at IST - Hamza, Karen, Michael, Chethan,
Samarth, Sasha - were amazing to be around, and I was treated to the wonderful city of Vienna,
while expanding my research horizons exploring new facets of cryptography. At Tel Aviv, working
with Nir, Idan and Alon, I was able to gain an improved understanding of some of the foundational
questions in cryptography. I’m incredibly grateful to both Krzysztof and Nir for giving me the
opportunity to work with them.

Additionally, Nils Fleischhacker, Vipul Goyal, Alon Rosen have played pivotal roles as research
mentors. I’m grateful for the their patience as I stumbled along, asking stupid questions while I
learned new things and I apologize for any tardiness on my part in the process. I hope to be able to
leave a similar impression when given the opportunity to mentor.

I would also like to thank Nils for his tikzpeople LATEX package that I continue to use in all my
talks, and for him to continue to humor my constant badgering with regards to the package.

I would like to thank my various lab mates over my time at Hopkins - Christina, Ian, Gabe,
Gijs, Aarushi, Alishah, Dave, Zhengzhong, Gabby, Max, Tushar, and more recent additions Aditya,
Pratyush, Harry, Logan and Atheer. I reserve a special mention for Alishah and Aarushi who started
the program the same time I did. We have spent countless evenings and nights in the lab talking
about both research and (more often than not) anything but research, and I shall miss those con-
versations. I have seen our lab grow in the time I’ve been here at Hopkins, and I’m incredibly proud
of where it is, and I will be watching excitedly from afar as it continues to grow.

I would like to thank all my collaborators, Prabhanjan Ananth, Nir Bitansky, Michele Ciampi,

iii

Aarushi Goel, Vipul Goyal, Matthew Green, Pavel Hubáček, Abhishek Jain, Zhengzhong Jin, Chethan
Kamath, Gabriel Kaptchuk, Ian Miers, Rafail Ostrovsky, Krzysztof Pietrzak, Alon Rosen and Guy
Rothblum.

In the department, I’ve been lucky to have made many friends with whom many hours have
been spent procrastinating by the coffee machine - Fabian, Rohit, Eli, Yasamin, Jaron, Aditya, Ama,
Ravi, Enayat, Teodor, Razieh. I apologize if I have missed anybody. Outside of the work, I was
able to rely on soccer to provide for an outlet of stress - my ever evolving weekly pick-up soccer
group, my various intramural soccer teams and my weekly leagues downtown. I have grown quite
attached to Baltimore over the years, and will miss the city dearly.

I would like to thank my parents, brother and my larger family for their unconditional support
throughout. I would like to thank Dhivya, who has been a constant support through my highs and
lows - I cannot imagine completing the PhD without you by my side.

Finally, over the last 20 odd months, and counting, the world has been ravaged by COVID-19.
All things considered, I was in a position of incredible privilege that I was only mildly affected by
the pandemic, which would not have been possible without the incredible support system that I
had around me (and the technology that enabled it).

Funding. This work was funded in part by DARPA/ARL Safeware Grant W911NF-15-C-0213, NSF
Grants CNS-1908181, CNS-1414023, CNS-1814919, NSF CAREER 1942789, Samsung Global Re-
search Outreach award, Johns Hopkins University Catalyst award and the Office of Naval Research
Grant N00014-19-1-2294

iv

Contents

Abstract i

Acknowledgments iii

List of Figures viii

1 Introduction 1
1.1 Deterministic Prover Zero-Knowledge . 2

1.1.1 This Work . 3
1.2 Round Optimal Secure MPC from Oblivious Transfer 4

1.2.1 Our Results . 5
1.2.2 Related Work . 6

1.3 Founding Secure Computation on Blockchains . 7
1.3.1 Our Results . 7
1.3.2 Related Work . 9

1.4 Outline of The Thesis . 10
1.4.1 Organization . 10

2 Preliminaries 12
2.1 General . 12

2.1.1 Basic Notation . 12
2.1.2 Indistinguishability of Ensembles . 13

2.1.2.1 Computational Indistinguishability 13
2.1.2.2 Statistical Indistinguishability . 13

2.2 One-way Functions . 14
2.3 Commitment Schemes . 14

2.3.1 Non-interactive Commitment Schemes . 14
2.3.2 Statistically Hiding Commitment Schemes . 15

2.4 Indistinguishability Obfuscation (IO) . 16
2.5 Witness Encryption . 16
2.6 Witness Indistinguishable Arguments . 17
2.7 Non-interactive Witness Indistinguishability (NIWI) 18
2.8 Collision Resistance against Bounded Non-uniform Adversaries 19
2.9 Pseudorandom Generators . 19
2.10 Signature Scheme . 19

v

2.11 Secure Multiparty Computation . 20
2.12 Garbled Circuits . 22
2.13 Oblivious Transfer . 23
2.14 Blockchain Model . 24

3 Deterministic Prover Zero-Knowledge 29
3.1 Overview . 29
3.2 Definitions . 32

3.2.1 Deterministic-Prover Zero Knowledge Against Bounded-Auxiliary-Input Veri-
fiers . 32

3.2.2 Explainable Verifiers . 33
3.3 A Deterministic-Prover Zero-Knowledge Protocol . 33

3.3.1 DPZK for Robustly-Explainable Verifiers . 33
3.3.2 From Explainable to Malicious Verifiers . 36

3.3.2.1 DPZK for NP ∩ co-NP . 36
3.3.2.2 DPZK for all of NP . 39

3.4 Predictable Arguments and DPZK . 41
3.5 Round Reduction and Laconicity . 44

3.5.1 Round Reduction . 44
3.5.2 Laconic Prover Messages . 46

3.6 Predictable Arguments from Honest-Verifier ZK . 48
3.7 Open Problems . 51

4 Round Optimal Multiparty Computation 52
4.1 Overview . 52

4.1.1 Enforcing Honest Behavior . 53
4.1.2 Rewinding Related Challenges . 56
4.1.3 Protocol Design Summary . 59

4.2 Preliminaries . 61
4.2.1 Extractable Commitment Scheme . 61
4.2.2 Extractable Commitments with Bounded Rewinding Security 62
4.2.3 Trapdoor Generation Protocol with Bounded Rewind Security 65

4.2.3.1 Construction . 66
4.2.4 Witness Indistinguishable Proofs with Bounded Rewinding Security 67
4.2.5 Non-Malleable Commitments . 68

4.2.5.1 Definitions . 70
4.2.5.2 Proof of Special Non-Malleable Commitments 72

4.3 Oblivious Transfer with Bounded Rewind Security . 74
4.3.1 Definition . 74
4.3.2 Construction . 75
4.3.3 Four Round Delayed Input Multiparty Computation with Bounded Rewind

Security . 78
4.4 Four Round MPC . 80

4.4.1 The Protocol . 83
4.4.1.1 Overview of Security Proof . 86

4.5 Full Security Proof . 88

vi

4.5.1 Overview of the Simulation . 88
4.5.2 Simulator Sim . 90

4.5.2.1 Hybrids . 98
4.5.2.2 Indistinguishability of Hybrids . 103

4.6 Bidirectional to Alternating message model . 125
4.7 Open Problems . 127

5 Founding Secure Computation on Blockchains 128
5.1 Overview . 128
5.2 Definitions and Preliminaries . 132

5.2.1 Zero Knowledge in the Gledger-hybrid model 132
5.2.2 Concurrently Secure Computation in the Gledger-hybrid model 132
5.2.3 (Multi-slot) Extractable Commitment Protocol ⟨C,R⟩ 134

5.3 Black-box Zero Knowledge . 135
5.3.1 Graph Hamiltonicity Zero-knowledge Proof 135
5.3.2 Our Protocol . 135

5.4 Concurrent Self Composable Secure Computation . 141
5.4.1 Concurrently Extractable Commitment . 141
5.4.2 Simulation-Extraction Strategy . 142
5.4.3 The Protocol . 149

5.4.3.1 Building Blocks . 149
5.4.3.2 Protocol Description . 151

5.5 Impossibility of Constant Round Black-Box Zero Knowledge 153
5.6 Black-Box Impossibility of Zero Knowledge in the Plain Model 157
5.7 UC Impossibility . 158
5.8 Open Problems . 159

A 174
A.1 Extend Policy for Bitcoin . 174
A.2 The Many Flavors of Zero-Knowledge . 175

A.2.1 Relationship Between Notions of Zero-knowledge 175
A.3 Goldreich-Oren [GO94] impossibility for Deterministic Provers 177
A.4 Lapidot-Shamir [LS91] Three Round Witness Indistinguishable Proof 179
A.5 Hazay-Lindell [HL10] Analysis . 182

vii

List of Figures

3.1 Deterministic prover zero-knowledge for robustly-explainable verifiers. 35
3.2 Deterministic-prover zero knowledge for L ∈ NP ∩ co-NP. 37
3.3 Deterministic prover zero-knowledge for L ∈ NP. 40
3.4 The Verifier in the Predictable Protocol . 43
3.5 Round collapsing transformation. 45
3.6 Laconic prover transformation. 47
3.7 Transforming DP-HVZK to PA . 50

4.1 Overall structure of the protocol . 60
4.2 Extractable Commitment Scheme recom. 63
4.3 Strategy of algorithm Extrecom. 65
4.4 Trapdoor Generation Protocol ΠTD. 67
4.5 Circuit C . 83
4.6 High level description of the rescheduled messages. 126
4.7 Π⇆ description. 127

5.1 Hamiltonicity proof system . 136
5.2 Protocol for zero-knowledge proof in the blockchain aware setting. 138
5.3 Simulator for zero-knowledge proof in Gledger-hybrid model. 139
5.4 Illustration of the strategy employed by Ã. 148
5.5 The ideal commitment functionality . 159

A.1 Hamiltonicity proof system . 180

viii

Chapter 1

Introduction

Modern Cryptography combines various facets of complexity and information theory, among others
areas, in order to cover a wide range of applications primarily dealing with controlled access to
information. While cryptography allows for many wonderful things, it is also important to charac-
terize what is possible through cryptography. In this thesis, we focus on three specific aspects that
we elaborate on below. Common to these aspects is that their focus lies in the design of protocols,
wherein two or more participants interact towards a pre-specified goal.

Necessity of Randomness in Zero-Knowledge Protocols. A Zero-Knowledge protocol con-
sists of an interaction between two parties, designated prover and verifier, where the prover is
trying to convince the verifier of the validity of a statement. Such protocols satisfy the natural
notion of completeness and soundness, wherein the validity of a true statement can be easily
conveyed, while a false statement cannot easily be proven to be valid. In addition, it is also
required that an adversarial verifier does not learn anything beyond the validity of the state-
ment. A typical application of zero-knowledge protocols is when the prover is in possession
of both a problem p and its solution s, and wants to use s in order to convince the verifier
that the problem p has a solution, without revealing anything about the solution s.1

Intuitively, one would think that this would require a prover to be randomized in order to
hide the solution (given randomness is essential in cryptography for the purposes of hiding, as
in encryption for instance). In fact, there are partial results attesting to exactly this intuition
[GO94]. In this work we ask if those partial results can be extended to rule out the existence
of deterministic provers, or whether these partial results are tight. Somewhat surprisingly, our
results prove the latter, by constructing zero-knowledge protocols with a deterministic prover
(in settings not ruled impossible by [GO94]).

Minimizing Interaction in Secure Computation Protocols. The next part focuses on one
of the most general notions in cryptography, that of secure computation. It allows mutually
distrusting parties to jointly compute a function over a network without revealing anything
but the output of the computation. Considering that these protocols are going to be run on
high-latency networks such as the internet, it is imperative that we design protocols suitable
for this environment. To this end, we want to minimize the interaction between participants

1For those familiar, the solution corresponds to the witness of an NP problem (statement).

1

of the protocol. The metric used to measure interactions is rounds, where a single round
constitutes every participant sending a message.

Garg, Mukherjee, Pandey and Polychroniadou [GMPP16] established a three round lower
bound for any secure computation protocol. We ask the question of whether their lower
bound is tight. Our results show that not only is their lower bound tight with respect to the
number of rounds, but also with respect to the necessary cryptographic assumptions.

Circumventing Impossibilities of Protocols on the Internet. The last part of this the-
sis focuses on desired properties from secure computation protocols that have been proven
impossible to achieve. Specifically, when secure computation protocols get deployed on the
internet, it will not be the case that only a single instance of the protocol is executed, but
several such instances will be executed concurrently. In fact, these different executions might
have overlapping participants. Do our protocols stay secure in this setting? Unfortunately, we
know that even in the simplest setting where we have multiple concurrent instances of the
same protocol running on the internet, it is impossible to design protocols secure against a
actively deviating participants.

In this work we ask what is the minimal trust we can consider to circumvent the impos-
sibility results. Our work shows that the existence of the blockchain (or more broadly global
ledgers) allows us to circumvent these impossibilities. In fact our work more broadly studies
the interaction of various protocols with the blockchain, and the challenges that arise from
their interaction.

We now delve into these problems in more detail.

1.1 Deterministic Prover Zero-Knowledge

Goldwasser, Micali, and Rackoff [GMR89a] founded the concept of zero-knowledge proofs on two
main elements: interaction and randomness. While both interaction and verifier randomness are
known to be essential for zero knowledge, the answer as to whether the prover must also be ran-
domized is not as definite. Goldreich and Oren [GO94] showed that prover randomness is essential
in order to achieve auxiliary-input zero-knowledge for non-trivial languages. According to this no-
tion, motivated by composition [GK96b], anything that a verifier can learn from the proof, on top
of the auxiliary information z it already possesses, can be efficiently simulated given the same
auxiliary information z.

So when is deterministic-prover zero knowledge possible? So far, deterministic prover zero
knowledge have only been shown to exist in the honest-verifier setting. Here Faonio, Nielsen, and
Venturi [FNV17] proved that any NP language L that has a witness encryption scheme [GGSW13],
also has a deterministic-prover honest-verifier (perfect) zero-knowledge argument, or proof, if the
language L has a hash proof system [CS02]. A similar result was recently shown by Dahari and
Lindell [DL20]. In the same work, Dahari and Lindell also show a statistically sound honest-verifier
zero knowledge protocol with an unbounded honest prover for all of NP assuming doubly-enhanced
injective one-way functions. In the malicious verifier setting, they give a protocol satisfying a non-
standard distributional notion of zero knowledge. In their definition, the prover has access to a pair
of witnesses sampled from a distribution, which satisfy a certain entropy guarantee.

Whether zero knowledge with a truly deterministic prover is possible considering any meaningful
form of malicious verifiers remains unknown.

2

1.1.1 This Work

We prove in that deterministic-prover zero knowledge for non-trivial languages is feasible for the
class of malicious verifiers with bounded auxiliary input.

Theorem 1 (Informal). Assuming non-interactive witness-indistinguishable proofs and subexponentially-
secure indistinguishability obfuscation and one-way functions, there exist two-message deterministic-
prover arguments for NP ∩ co-NP that are zero-knowledge against bounded-auxiliary-input verifiers.2

Theorem 2 (Informal). Assuming also keyless hash functions that are collision-resistant against
bounded-auxiliary-input quasipolynomial-time attackers, there exist similar arguments for all of NP.

By zero knowledge against bounded-auxiliary-input verifiers we formally mean that for any
polynomial bound b, there exists a corresponding deterministic-prover argument that is zero knowl-
edge against (malicious) verifiers with non-uniform auxiliary input of size at most b. This, in par-
ticular, includes the class of uniform verifiers, considered in the original zero-knowledge definition
of [GMR89a]. We stress that the running time of the verifier may be an arbitrary polynomial,
potentially larger than b. Also, indistinguishability of simulated and real proofs holds against non-
uniform distinguishers of arbitrary polynomial size. Same goes for soundness, which holds against
non-uniform provers of arbitrary polynomial size.

Together with the impossibility result of Goldreich and Oren for unbounded auxiliary input,
the above results give a complete picture of when exactly deterministic-prover zero knowledge is
feasible. We note that two-message zero knowledge against unbounded auxiliary input is by itself
known to be impossible. Our result indeed circumvents this impossibility (for bounded auxiliary
input), but this was already known (with a randomized prover) [BCPR14].

On the Necessity of Strong Assumptions and Predictable Arguments. To demonstrate the
feasibility of deterministic-prover zero knowledge, we rely on hardness assumptions that are ar-
guably strong. We show that this is inherent. Specifically, we show that deterministic prover zero-
knowledge arguments for NP imply witness encryption for NP, which at this point is only known
based on strong assumptions, such as indistinguishability obfuscation.

The implication to witness encryption, in fact, follows from a more general implication to pre-
dictable arguments. Predictable arguments, introduced by Faonio, Nielsen, and Venturi [FNV17],
are arguments where the honest verifier’s (private) random coins efficiently determine a unique
accepting transcript — in order to convince the verifier, the prover must be consistent with this
transcript throughout the entire protocol. We prove that any deterministic-prover zero-knowledge
argument against bounded-auxiliary-input verifiers can be turned into a predictable argument. The
transformation, in fact, preserves the honest prover algorithm, and in particular also zero knowl-
edge.

Theorem 3 (Informal). Any deterministic-prover zero-knowledge argument against bounded-auxiliary-
input verifiers can be made predictable.

We also give a transformation that only requires honest-verifier zero knowledge and works
provided that the argument is expressive enough (e.g., for all NP or even just NP∩co-NP). The fact

2Indistinguishability obfuscation implies non-interactive witness indistinguishable proofs, but with a randomized verifier
[BP15], which is insufficient for our purpose. The verifier can be derandomized under a worst-case Nisan-Wigderson [NW94]
type derandomization assumption [BV17]. Non-interactive witness indistinguishable proofs with a deterministic verifier are
also known from standard assumptions on bilinear maps [GOS06].

3

that deterministic-prover zero knowledge arguments imply witness encryption, then follows from
[FNV17] where predictable arguments are shown to imply witness encryption.

Corollary 1 (of Predictability). Any deterministic-prover zero-knowledge argument against bounded-
auxiliary-input verifiers for a language L implies a witness encryption scheme for L.

We use additional known results regarding predictable arguments [FNV17] to deduce similar
results for deterministic-prover zero knowledge:

Corollary 2 (of Predictability). Any deterministic-prover zero-knowledge argument against bounded-
auxiliary-input verifiers can be reduced to two messages and made laconic.

Here by laconic [GVW01, FNV17] we mean that the prover sends a single bit and the soundness
error is negligibly close to 1/2; or more generally, the prover sends ℓ bit in order to obtain a
soundness error negligibly close to 2−ℓ.

Non-Black-Box Zero-Knowledge Simulation. The zero-knowledge simulator in our constructed
arguments makes non-black-box use of the verifier’s code. This is known to be inherent — black-
box simulation is impossible in the setting of two (or even three) message zero knowledge against
bounded-auxiliary-input verifiers [GK96b, BCPR14].

1.2 Round Optimal Secure MPC from Oblivious Transfer

The ability to securely compute on private datasets of individuals has wide applications of tremen-
dous benefits to society. Secure multiparty computation (MPC) [Yao86, GMW87a] provides a solu-
tion to the problem of computing on private data by allowing a group of parties to jointly evaluate
any function over their private inputs in such a manner that no one learns anything beyond the
output of the function.

Since its introduction nearly three decades ago, MPC has been extensively studied along two
fundamental lines: necessary assumptions [GMW87a, Kil88, IPS08], and round complexity [GMW87a,
BMR90, KOS03, KO04, Pas04, PW10, Wee10, Goy11, GMPP16, ACJ17, BHP17, COSV17a, COSV17b].
3

Even for the case of malicious adversaries who may corrupt any number of parties, both of these
topics, individually, are by now pretty well understood:

– It is well known that oblivious transfer (OT) is both necessary and sufficient [Kil88, IPS08]
for MPC.

– A recent sequence of works have established that four rounds are both necessary [GMPP16]
and sufficient [ACJ17, BHP17, BGJ+18, HHPV18] for MPC (with respect to black-box simula-
tion). However, the assumptions required by these works are far from optimal, ranging from
sub-exponential hardness assumptions [ACJ17, BHP17] to polynomial hardness of specific
forms of encryption schemes [HHPV18] or specific number-theoretic assumptions [BGJ+18].

In this work, we consider the well studied goal of building round-efficient MPC while minimizing
the underlying cryptographic assumptions. Namely:

3A detailed discussion on related works can be found in Section 1.2.2.

4

Can we construct round optimal MPC from minimal assumptions?

Precisely, we ask whether it is possible to construct four round MPC from four round OT. This
was explicitly left as an open problem in the elegant work of Benhamouda and Lin [BL18] who
constructed k-round MPC from k-round OT for k ≥ 5.

1.2.1 Our Results

In this work, we resolve the above question in the affirmative. Namely, we construct four round
malicious-secure MPC based only on four round (malicious-secure) OT. Our protocol admits black-
box simulation and achieves security against malicious adversaries in the dishonest majority setting.

Theorem 4 (Informal). Assuming the existence of four round OT, there exists a four round MPC
protocol for any efficiently computable functionality in the plain model.

This settles the long line of research on constructing round efficient MPC from minimal crypto-
graphic assumptions.

Our Approach. To obtain our result, we take a conceptually different approach from the works of
[ACJ17, BHP17, BGJ+18, HHPV18] for enforcing honest behavior on (possibly malicious) protocol
participants. Unlike these works, we do not require the parties to give an explicit proof of honest
behavior within the first three rounds of the protocol. Instead, we devise a multiparty conditional
disclosure of secrets mechanism that ensures that the final round messages of the honest parties
become “opaque” if even a single participant behaved maliciously. A key property of this mechanism
is that it allows for each party to obtain a public witness that attests to honest behavior of all the
parties, without compromising the security of any party. We refer the reader to Section 4.1 for
details.

On the Minimal Assumptions. We study MPC in the standard broadcast communication model,
where in each round, every party broadcasts a message to the other parties. In this model, k-round
MPC implies k-round bidirectional OT, where each round consists of messages from both the OT
sender and the receiver. However, it is not immediately clear whether it also implies k-round OT
in the standard, alternating-message model for two-party protocols where each round consists of a
message from only one of the two parties. As such, the minimal assumption for k-round MPC is, in
fact, k-round bidirectional OT (as opposed to alternating-message OT).

Towards establishing the optimality of Theorem 4, we observe that k-round bidirectional OT
implies k-round alternating-message OT.

Theorem 5. k-round bidirectional OT implies k-round alternating-message OT.

Our transformation is unconditional and generalizes a message rescheduling strategy previously
considered by Garg et al. [GMPP16] for the specific case of three round coin-tossing protocols. In
fact, this transformation is even more general and applies to any two-party functionality, with the
restriction that only one party learns the output in the alternating-message protocol.

An important corollary of Theorem 5 is that it establishes the missing piece from the result of
Benhamouda and Lin [BL18] who constructed k-round MPC from any k-round alternating-message
OT for k ≥ 5. Their result, put together with our main result in Theorem 4 provides a full resolution
of the fundamental question of basing round efficient MPC on minimal assumptions.

In the sequel, for simplicity of exposition, we refer to alternating-message OT as simply OT.

5

1.2.2 Related Work

Round-Complexity of MPC. The round complexity of MPC has been extensively studied over the
years in a variety of models. Here, we provide a short survey of malicious-secure MPC protocols in
the plain model. We refer the reader to [BGJ+18] for a more comprehensive survey.

Beaver et al. [BMR90] initiated the study of constant round MPC in the honest majority set-
ting. Several follow-up works subsequently constructed constant round MPC against dishonest
majority (which is the focus of the present work) [KOS03, Pas04, PW10, Wee10, Goy11]. Garg et
al. [GMPP16] established a lower bound of four rounds for MPC. They constructed five and six
round MPC protocols using indistinguishability obfuscation and LWE, respectively, together with
three-round robust non-malleable commitments.

The first four round MPC protocols were constructed by Ananth et al. [ACJ17] and Brakerski
et al. [BHP17] based on different sub-exponential-time hardness assumptions. [ACJ17] also con-
structed a five round MPC protocol based on polynomial-time hardness assumptions. Ciampi et al.
constructed four-round protocols for multiparty coin-tossing [COSV17a] and two-party computa-
tion [COSV17b] from polynomial-time assumptions. Benhamouda and Lin [BL18] gave a general
transformation from any k-round OT with alternating messages to k-round MPC, for k ≥ 5. More
recently, independent works of Badrinarayanan et al. [BGJ+18] and Halevi et al. [HHPV18] con-
structed four round MPC protcols for general functionalities based on different polynomial-time
assumptions. Specifically, [BGJ+18] rely on DDH (or QR or N -th Residuosity), and [HHPV18] rely
on Zaps, affine-homomorphic encryption schemes and injective one-way functions (which can all
be instantiated from QR).

Conditional Disclosure of Secrets. The notion of CDS has also been extensively studied over the
years in a variety of models. The works most relevant to ours are [AIR01, BP12, AJ17, BKP19] that
consider the computational setting with two parties, a sender and a receiver. The sender holds an
instance x (of an NP language) and a message m, while the receiver holds x and the corresponding
witness w. If the witness is valid for x, then the receiver obtains m, whereas if the instance x is not
in the language, m remains hidden. The CDS protocols are presented in the two message setting,
and can be thought of a lightweight alternative to zero-knowledge.

Another line of work, initiated by [GIKM98] studies CDS in the information theoretic setting,
where the input x is divided among multiple senders that share common randomness (and a secret).
Each sender is constrained to sending a single message to the receiver, who can then reconstruct
the secret only if some relation R over x is satisfied. This setting has seen renewed interest, with
recent works focusing on the communication complexity (for example, see [GKW15]). Due to the
necessity of a common random string and the corruption model, this line of work is not relevant to
our setting.

To the best of our knowledge, CDS in the multiparty setting was previously only considered in
the work of [IKP10], where they present two separate notions. The first notion is reminiscent of
the original notion in [GIKM98], which is a non-interactive protocol, where the parties that share
a secret also share a common random string. The second notion, bearing slight similarity to ours,
does not require the parties with the input to share randomness. But this second notion is only
defined for a very special relation where the secret is revealed only if all the parties with inputs,
have the same input (i.e. the relation on x is that all the divisions of x are the same). In this
constrained setting, they in fact achieve information theoretic security in the dishonest majority for
adversaries that have some additional “structural” requirements.

6

This work is the result of a merge of the works [CO19] and [CGJ19], and subsumes both these
works.

1.3 Founding Secure Computation on Blockchains

Blockchain is an exciting new technology which is having a profound impact on the world of cryp-
tography. Blockchains provide both: new applications of existing cryptographic primitives (such
as hash function, or zero-knowledge proofs), as well as, novel foundations on which new crypto-
graphic primitives can be realized (such as fair-secure computation [ADMM14, BK14, CGJ+17], or,
one-time programs [GG17]). In this work, we seek to examine the foundations of secure computa-
tion protocols in the context of blockchains. More concretely, we study what we call the blockchain-
hybrid model and examine constructions of zero-knowledge and secure computation in this model.

The Blockchain-Hybrid Model. In order to facilitate the use of blockchains in secure computa-
tion, we study the blockchain-hybrid model, where the blockchain – modeled as a global ledger
functionality – is available to all the participants of a cryptographic protocol. The parties can ac-
cess the blockchain by posting and reading content, but no single party has any control over the
blockchain. Our modeling follows previous elegant works on formalizing the blockchain function-
ality [KZZ16, BMTZ17, BGK+18]. In particular, our model is based on the global blockchain ledger
model from Badertscher et. al [BMTZ17].

We study simulation-based security in the blockchain-hybrid model. In our model, the simulator
does not have any control over the blockchain, and simply treats it as an oracle just like protocol
participants. Thus, unlike traditional trusted setup models such as common reference string, the
blockchain-hybrid model does not provide any new “power” to the simulator. In particular, the sim-
ulator is restricted to its plain model capabilities such as resetting the adversary or using knowledge
of its code. Thus, in our model, the blockchain can be global, in that it can be used by multiple
different protocols at the same time. This is reminiscent of simulation in the global UC framework
[CDPW07, CJS14, HPV16]. A related model is the global Random Oracle model [CJS14] where
the simulator can only observe the queries made by the adversary to the random oracle, but cannot
program the random oracle (since it is global and therefore shared across many protocols).

Secure Computation based on Blockchains. We study the foundations of secure computation in
the presence of the global blockchain functionality. Interestingly, we demonstrate both destructive
and constructive applications of blockchains to cryptography. Primitives which were earlier possible
to realize now become impossible. At the same, working in this model allows us to overcome pre-
viously established deep impossibility results in cryptography. Interestingly, we also utilize mining
delays – typically viewed as a negative feature of blockchains – for constructive purposes in this
work. Our main results as discussed next.

1.3.1 Our Results

Simulation Failure in the Presence of Blockchains. We consider a new class of adversaries that
we refer to as blockchain-active adversaries. These adversaries are similar to usual cryptographic
adversaries, except that they have user access to a blockchain, i.e., they can post on the blockchain
and read its state at any point.

7

We observe that such adversaries can foil many existing simulation techniques that are used
for proving security of standard cryptographic schemes. To illustrate the main idea, let us con-
sider rewinding-based black-box simulation techniques that are used, e.g., in zero-knowledge (ZK)
proofs [GMR85], secure multiparty computation [Yao82a, GMW87a], and signature schemes in the
random oracle model constructed via the Fiat-Shamir heuristic [FS87]. A crucial requirement for
the success of rewinding-based simulation is that the adversary should be oblivious to the rewind-
ing. Usually, this requirement can be easily met since the simulator can simply “reset” the code of
the adversary, which prevents it from keeping state across the rewindings.

A blockchain-active adversary, however, can periodically post on the blockchain and use it to
maintain state across rewindings, and therefore detect that it is being rewound. In this case, the
adversary can simply abort and therefore fail the simulation process.4 It is not too difficult to turn
the above idea into a formal impossibility result for ZK proofs against blockchain-active adversaries,
when the simulation is required to be black-box.

Theorem 6 (Informal). There does not exist an interactive argument in the plain model which is
zero-knowledge w.r.t. black-box simulation against blockchain-active adversaries.

The above impossibility result extends to secure multiparty computation and other natural cryp-
tographic primitives whose security is proven via a rewinding simulator.

Constructing Zero-Knowledge Protocols. To overcome the above problems posed by blockchains,
we look towards blockchains for a solution as well. Our idea is to make the protocol blockchain
active as well. That is, in addition to the adversary, the honest parties would have access to the
blockchain as well.

Our first positive result is an ω(1)-round ZK proof system in the blockchain-hybrid model whose
security is proven w.r.t. black-box simulation.

Theorem 7 (Informal). Assuming collision-resistant hash functions, there exists an ω(1)-round ZK
proof system in the blockchain-hybrid model w.r.t. black-box simulation.

Interestingly, in our construction, the honest parties do not post any message on the blockchains.
Instead, they only keep a “tab” on the current state of the blockchain in order to decide whether or
not to continue the protocol.

We also show that the above result is tight. Namely, we show that using black-box simulation,
constant-round ZK is impossible in the blockchain-hybrid model.

Theorem 8 (Informal). Assuming one-way functions, there does not exist an O(1)-round ZK argu-
ment system in the blockchain-hybrid model w.r.t. a (expected probabilistic polynomial time) black-box
simulator.

This is in sharp contrast to the plain model where there are a number of classical constant
round zero-knowledge protocols that are proven secure w.r.t. a black-box simulator [GK96b, FS90,
BJY97].

Concurrent Secure Computation using Blockchains. Classical secure computation protocols such
as [Yao82a, GMW87a] only achieve “stand-alone” security, and fail in the setting of concurrent self-
composition, where multiple copies of a protocol may be executed concurrently, under the control

4This is reminiscent to the problems that arise in the context of UC security, where the adversary cannot be rewound
since it can communicate with an external environment, leading to broad impossibility results for zero-knowledge and secure
computation [Can01, CF01, CKL03].

8

of an adversary. In fact, achieving concurrent secure computation in the plain model has been
shown to be impossible [CKL03, Lin03, Lin04, Lin08, BPS06, Goy12, AGJ+12, GKOV12]. The
above impossibility results are far reaching and rule out secure computation for a large class of
functionalities in a variety of settings.

Interestingly, we show that concurrent self-composition is possible in the blockchain-hybrid
model w.r.t. standard real/ideal model notion of security with a PPT simulator. Thus, our re-
sults (put together) show that designing cryptographic primitives in the blockchain-hybrid model
is, in some sense, harder and easier at the same time.

Theorem 9 (Informal). Assuming collision-resistant hash functions and oblivious transfer, there exists
a concurrent self-composable secure computation protocol for all polynomial-time functionalities in the
blockchain-hybrid model.

In our protocol, each party is required to post an initial message (which corresponds to a com-
mitment to its input and randomness) on the blockchain. However, an honest party can simply
perform this posting in an “offline” phase prior to the start of the protocol. In particular, once the
protocol starts, an honest party is not required to post any additional message on the blockchain.

A number of prior beautiful works have constructed concurrent (and universally composable)
secure computation in various setup models such as the trusted common reference string model
[CLOS02], the registered public-key model [BCNP04], the tamper-proof hardware model [Kat07,
CGS08, GIS+10], and the physically uncloneable functions model [BFSK11, DFK+14, BKOV17]. We
believe that the blockchain model provides an appealing decentralized alternative to these models
since there are no physical assumptions or centralized trusted parties involved. Moreover, it allows
for basing concurrent security on an already existing and widely used infrastructure. Further, it
is possible to obtain strong guarantees of the following form: an adversary who can break our
construction can also break the security of the underlying blockchain (potentially allowing it to
gain large amounts of cryptocurrency), or the underlying cryptographic assumptions (oblivious
transfer and collision-resistant hash functions in our case).

Impossibility of UC Security. While Theorem 9 establishes the feasibility of concurrent self-
composition, we show that universal composition security [Can01] is impossible in the blockchain-
hybrid model:

Theorem 10 (Informal). Universally composable commitments are impossible in the blockchain-
hybrid model.

We prove the above result via a simple adaptation of the impossibility result of [CF01] to the
blockchain-hybrid model. The main intuition behind this result is that a simulator in the blockchain-
hybrid model has the same capabilities as in the plain model, namely, the ability to rewind the
adversary or using knowledge of its code. Crucially, (unlike the non-programmable random oracle
model [CJS14]) the ability to see the queries made to the blockchain do not constitute a new
capability for the simulator since everyone can see those queries.

1.3.2 Related Work

Blockchains and Cryptography. In a recent work, [GG17] used blockchains to construct non-
interactive zero-knowledge (NIZK) arguments and selectively-secure one-time programs. Their
model, however, is fundamentally different from ours in that they rely on a much stronger notion

9

of simulation where the simulator controls all the honest miners in the blockchain. Intuitively, this
is somewhat similar to the honest majority model used to design (universally composable) secure
multiparty computation protocols. Due to the power given to the simulator, their model necessi-
tates the blockchain to be “local” (i.e., private) to the protocol. In contrast, our model allows for the
blockchain to be a “global” setup since the simulator has no extra power over the blockchain com-
pared to the adversary. This is similar to the difference between universal composability framework
[Can01] and global universal composability framework [CDPW07], where in the former model, a
setup (such as a common reference string) cannot be reused by different protocols, whereas in the
latter model, a common setup can be used across multiple protocols. Indeed, since the simulator
has no additional power except the ability to reset the adversary or use knowledge of its code,
NIZKs are impossible in our model, similar to the plain model. Unlike our work, [GG17] do not
consider interactive ZK proofs or any notion of secure multiparty computation.

In another recent work, [CGJ+17] study the problem of fair multiparty computation in a “bulletin-
board” model that can be implemented with blockchains. Similar to [GG17], however, their model
provides the simulator the ability to control the blockchain. Prior to their work, multiple works
[ADMM14, BK14] studied the problem of fairness with penalties using cryptocurrencies.

Several elegant works have conducted a formal study of various properties of blockchains
[GKL15, PSs17, GKL17, KRDO17, BMTZ17]. Most relevant to our work is that of Badertscher
et. al [BMTZ17] whose modeling of the blockchain ideal functionality we closely follow.

Concurrent Security. The study of concurrent security for cryptographic protocols was initiated
by Dwork et al. [DNS98] who also introduced a timing model for constructing concurrent ZK. In
this model, the parties have synchronized clocks and are required to insert “delays” at appropriate
points in the protocol. A refined version of their model was later considered in [KLP05] for the
problem of concurrent secure computation. We note that while our approach to concurrent secure
computation in the blockchain-hybrid model appears to bear some similarity to the timing model,
there are fundamental differences that separate these models. For example, the simulator can fully
control the clock of the adversary in the timing model, while this is not possible in our setting since
the blockchains provide an unforgeable clock to the adversary. More importantly, in the timing
model, there are no “unsafe” points, and the simulator can rewind anywhere. For this reason,
the timing model does not require developing new concurrent extraction techniques, and instead
standard rewinding techniques for the stand-alone setting are applicable there. Finally, in the
timing model, honest parties insert artificial delays in the protocol based on their clocks, while
in our constructions, an honest party responds immediately to messages received from the other
(possibly adversarial) party.

1.4 Outline of The Thesis

We provide an outline of this thesis below.

1.4.1 Organization

We start with our model of the blockchain in section 2.14, and all subsequent results are in this
model. In section 5.3 we describe a ω(1) round black-box zero-knowledge protocol. We describe our
concurrently extractable commitment scheme in section 5.4 and use our constructed commitment

10

scheme to achieve a concurrently secure two-party computation protocol described in section 5.4.3.
We move on to our impossibility results starting with a lower bound on the round complexity of
black-box zero-knowledge in section 5.5. In section 5.6 we show that allowing only the adversary
access to the blockchain rules out zero knowledge. Finally, we show that UC commitments are
impossible in section 5.7.

11

Chapter 2

Preliminaries

We describe in this section notation that we will across this work. We also define some necessary
cryptographic primitives. There are some primitives (not defined) that are closely tied to the work
they appear in, and those we define in their corresponding chapter.

2.1 General

2.1.1 Basic Notation

Sets. We use [k] to denote the set {1, · · · , k} and the shorthand {0, 1}k to denote the set of all k bit
strings. Finally, {0, 1}∗ will be used to denote the infinite set {ε, 0, 1, 00, 01, 10, 11, 000, · · · } where ε
is the empty string i.e. {0, 1}∗ denotes the set of all possible bit strings.

Probability distributions. We say X is a distribution over some universe U if it assigns a probability
pu to the element u ∈ U such that

∑
u∈U pu = 1. We denote by x ← X the process of sampling an

element x from the distribution X. When we sample uniformly at random from binary strings of
length ℓ, we denote this by x←$ {0, 1}ℓ.

Turing machines. In this work, all the participants are modeled as Turing machines, specifically
they are modeled as probabilistic polynomial-time (PPT) Turning machines, where the Turing ma-
chine is equipped with a random tape and runs in polynomial time. We will also consider the
non-uniform model of Turing machines, which incorporates “auxiliary” information for each input
length. Formally, a non-uniform PPT M = {Mλ}λ is a family of probabilistic Turing machines
(one for each λ), where there exists a polynomial poly, such that the description size |Mλ| and the
running time of Mλ are bounded by poly(λ).

Randomized Algorithms. When we want to explicitly specify the randomness used by an algo-
rithm A (resp. Turing machine M) we denote this by y := A(x; r) (resp. y := M(x; r)) where x is the
input, y the output and r the random coins with “:=” the assignment operator. If the randomness is
implicit, we write the same as y ← A(x).

12

NP Languages and Relations. A language L ⊆ {0, 1}∗ is said to be in the class NP (i.e. L ∈ NP)
if there exists a Boolean relation RL ⊆ {0, 1}∗ × {0, 1}∗ and a polynomial p(·) such that RL can
be recognized in (deterministic) polynomial time, and x ∈ L if and only if there exists a w such
that |w| ≤ (p|x|) and (x,w) ∈ RL. Such a w is called a witness for membership of x ∈ L. We will
overload notation and denote w to be a valid witness for x if RL(x,w) = 1. Further, we use the
notation RL(x) to denote the set of all witnesses w such that RL(x,w) = 1.

The complement of a language L, is defined to be L := {0, 1}∗ \L. We say L ∈ co-NP if L ∈ NP,
i.e. there is an efficiently verifiable witness for the non-membership in L.

Negligible functions. In this work we will often use the term negligible to describe a function that
diminishes faster than any inverse polynomial. Specifically, we denote such functions by negl(·) if
∀c ∈ N, ∃n0 ∈ N such that ∀n ≥ n0, negl(λ) < 1

nc .

2.1.2 Indistinguishability of Ensembles

In this work, we shall often compare probability distributions. Specifically, we shall talk of the
closeness of multiple distribution ensembles. Specifically, let S ∈ {0, 1}∗ be a set of strings. A
probability ensemble indexed by S is a sequence of random variables indexed by S. For instance
X = {Xα}α∈S is ensemble indexed by S.

Often we will find it convenient to index the random variables in the ensemble by the set of
natural numbers N.

2.1.2.1 Computational Indistinguishability

Throughout this work, we will talk about computational indistinguishability with respect to non-
uniform distinguishers.

Definition 1 (Computational Indistinguishability). Two ensembles X = {Xα}α∈S and Y = {Yα}α∈S

are said to be computationally indistinguishable, denoted by X ≈c Y , if for every non-uniform PPT
distinguisher D, every polynomial p, all sufficiently large λ and every α ∈ {0, 1}poly(λ) ∩ S

∣∣∣Pr
[
D(1λ, Xα) = 1

]
− Pr

[
D(1λ, Yα) = 1

]∣∣∣ < 1

p(λ)
,

where the probability are taken over the samples of Xα, Yα and coin tosses of D.

2.1.2.2 Statistical Indistinguishability

We shall sometimes find it convenient to talk about the stronger notion of statistical indistinguisha-
bility, defined below. But first, we define the statistical distance between two distributions.

Definition 2 (Statistical Distance ∆). If X and Y are probability distributions on a discrete universe
U , then the statistical distance between X and Y is defined to be

∆(X,Y) := max
T⊂U
|Pr[X ∈ T]− Pr[Y ∈ T]| .

13

Definition 3 (Statistical Indistinguishability). Two ensembles X = {Xα}α∈S and Y = {Yα}α∈S

are said to be statistically indistinguishable, denoted by X ≈s Y , if for every polynomial p, all suffi-
ciently large λ and every α ∈ {0, 1}poly(λ) ∩ S

∆(Xα, Yα) <
1

p(λ)
,

where ∆(Xα, Yα) corresponds to the statistical distance between Xα and Yα as described earlier.

When ∆(Xα, Yα) = 0 for all α, we say the ensembles are identical.

2.2 One-way Functions

Although we do not directly use one-way functions in our work, many of the primitives that we will
use are known to exist assuming the existence of one-way functions (and its variants). We define it
below for completeness.

Definition 4 (One-way Function). A function f : {0, 1}∗ 7→ {0, 1}∗ is a one way function if it satisfies
the following two conditions:

1. Easy to compute: There is a PPT algorithm C s.t. ∀x ∈ {0, 1}∗,

Pr[r ←$ {0, 1}m : C(x; r) = f(x)] = 1.

2. Hard to invert: For every non-uniform PPT adversary A,

Pr
[
x←$ {0, 1}λ, x̃← A(1λ, f(x)) : f(x̃) = f(x)

]
≤ negl(λ)

The above definition extends to injective one-way functions (resp. one-way permutations), if f
is an injective function (resp. permutation). While the existence of injective one-way functions or
one-way permutation clearly implies the existence of one-way functions, the opposite is not true. In
fact there are black-box separation results between one-way functions and one-way permutations
[Rud88, KSS11], i.e. the existence of one-way functions do not imply the existence of one-way
functions in a black-box manner. Therefore the above notions are treated as different assumptions,
and will be stated as such across the thesis.

2.3 Commitment Schemes

We will consider various flavors of commitments schemes that vary depending on the security
properties desired.

2.3.1 Non-interactive Commitment Schemes

We define below bit commitment schemes

Definition 5 (Non-interactive Bit Commitment Schemes). A polynomial time computable func-
tion: Com : {0, 1} × {0, 1}λ 7→ {0, 1}ℓ(λ) is a bit commitment if it satisfies the properties below:

14

Binding: For any r, r′ ∈ {0, 1}λ, b, b′ ∈ {0, 1}, if Com(b; r) = Com(b′; r′) then b = b′.

Computational Hiding: The following holds:
{
Com(0; r) : r ←$ {0, 1}λ

}
≈c

{
Com(1; r) : r ←$ {0, 1}λ

}
.

where computational indistinguishability is with respect to arbitrary non-uniform PPT distin-
guisher.

We note that the above scheme can be extended to commit to strings, rather than just bits, by
committing to each bit independently and we will use the syntax interchangeably. Such commit-
ments can be constructed assuming injective one-way functions [Blu81, Yao82b, GL89]. Looking
ahead, our construction of deterministic prover-zero knowledge protocol requires that the under-
lying string that is committed can be extracted in quasi-polynomial time. Such commitments can
be constructed from subexponentiall-secure injective one-way functions (which in turn can be con-
structed from subexponential IO and one-way functions).

Two Round Statistically Binding Commitments. We also consider a variant of the above defini-
tion in the two message setting, where the commitment receiver computes the first message rec1,
and the commit function Com in addition to the input bit (or string) and randomness now also takes
as input the receiver message rec1. Statistical binding guarantees that binding condition in the above
definition holds with all but negligible probability, where the probability is taken over the random
coins used to compute rec1. Unlike non-interactive commitments, two round statistically binding
commitments can be built from the weaker assumption of one-way functions [HILL99, Nao91].

2.3.2 Statistically Hiding Commitment Schemes

We consider a variant of the commitment scheme, (two round) statistically hiding commitment
scheme[NOVY98, HHK+05] where the hiding property is required to be statistical whereas the
binding is only required to be computational.

Since this will be a two round protocol, we shall introduce some notation here. The protocol is
specified by (S,R, V) between a sender S and the receiver R, with V corresponding to the verifier
for the decommitment. The output of the interaction ⟨S(1λ, b), R(1λ)⟩ is (decom, com) where decom
is the decommitment output by the sender S and com is the state information output by the receiver
R. The verifier V on input (decom, com) outputs either 0 or 1 to indicate the committed bit.

Definition 6 (Statistically Hiding Commitment Schemes). (S,R, V) is a statistically hiding com-
mitment scheme if it satisfies the properties below:

Completeness For any λ ∈ N, b ∈ {0, 1},

Pr
[
V
(
OutS⟨S(1λ, b), R(1λ)⟩,OutR⟨S(1λ, b), R(1λ)⟩

)
= b

]
= 1

Computational Binding: For all PPT senders S∗,

Pr

[
V (decom, com), V (decom′, com) ∈ {0, 1}
V (decom, com) ̸= V (decom′, com)

: ((decom, decom′), com)← ⟨S∗(1λ), R(1λ)⟩
]
= 1

15

Statistical Hiding: The following holds for every PPT algorithm R∗:
{
ViewR∗⟨S(1λ, 0), R∗(1λ)⟩

}
≈s

{
ViewR∗⟨S(1λ, 1), R∗(1λ)⟩

}
.

.

Such two round schemes can be constructed based on collision resistant hash functions [NY89,
HM96].

2.4 Indistinguishability Obfuscation (IO)

We now give a definition of indistinguishability obfuscator for Turing Machines, which can be con-
structed from indistinguishability obfuscators for circuits [KLW15, BCG+18, GS18a].

Definition 7 (Indistinguishability Obfuscator for Turing Machines). A succinct indistinguishabil-
ity obfuscator for Turing machines consists of a PPT machine iOM that works as follows:

– iOM takes as input the security parameter 1λ, the Turing machine M to obfuscate, an input length
n, and time bound t.

– iOM outputs a Turing machine M̃ which is an obfuscation of M corresponding to input length n

and time bound t. M̃ takes as input x ∈ {0, 1}n.

The scheme should satisfy the following requirements:

Correctness For all λ ∈ N, for all M ∈Mλ, for all inputs x ∈ {0, 1}n, time bounds t′ such that t′ ≤ t,
let y be the output of M(x) after at most t steps, then

Pr
[
M̃← iOM(1λ, 1n, 1log t,M) : M̃(x) = y

]
= 1 .

Security It holds that
{
iOM(1λ, 1n, 1log t,M0)

}
λ,t,n,
M0,M1

≈c

{
iOM(1λ, 1n, 1log t,M1)

}
λ,t,n,
M0,M1

,

where λ ∈ N, n ≤ t ≤ 2λ, and M0,M1 are any pair of machines of the same size such that for
any input x ∈ {0, 1}n both halt after the same number of steps with the same output.

Efficiency and Succinctness We require that the running time of iOM and the length of its output,
namely the obfuscated machine M̃, is poly(|M|, log t, n, λ). We also require that the running time
t̃x of M̃(x) is poly(tx, |M|, n, λ), where tx is the running time of M(x).

2.5 Witness Encryption

The following definition of witness encryption is taken from [GGSW13].

Definition 8. A witness encryption scheme for an NP language L, with corresponding witness relation
RL, consists of the following two polynomial-time algorithms:

16

Encryption. The probabilistic algorithm WE.Enc(1λ, x,m) takes as input a security parameter 1λ, a
string x ∈ {0, 1}∗, and a message m ∈ {0, 1}. It outputs a ciphertext ct.

Decryption. The algorithm WE.dec(ct, w) takes as input a ciphertext ct, a string w ∈ {0, 1}∗. It
outputs either a message m ∈ {0, 1}.

The above algorithms satisfy the following conditions:

– Correctness. For any security parameter λ, for any m ∈ {0, 1}, and for any (x,w) ∈ RL, we
have that

Pr
[
ct←WE.Enc(1λ, x,m) : WE.dec(ct, w) = m

]
= 1 .

– Security. For any non-uniform PPTadversary A, there exists a negligible function negl(·) such
that for any λ ∈ N, and any x /∈ L, we have that

{
WE.Enc(1λ, x, 0)

}
λ∈N,x/∈L ≈c

{
WE.Enc(1λ, x, 1)

}
λ∈N,x/∈L .

We note that the above scheme can be extended to encrypt strings, rather than just bits, by
encrypting each bit independently. Witness encryption for all of NP can be constructed from IO for
circuits [GGSW13].

2.6 Witness Indistinguishable Arguments

We define here delayed-input Interactive Arguments. We ignore the input security parameter 1λ to
each of the protocols in our description below and assume it is implicit.

Definition 9 (Delayed-Input Interactive Arguments). An n-round delayed-input interactive proto-
col (P,V) for deciding a language L is an argument system for L that satisfies the following properties:

– Delayed-Input Completeness. For every security parameter λ ∈ N, and any (x,w) ∈ RL such
that |x| ≤ 2λ,

Pr[OutV⟨P(x,w),V(x)⟩ = 1] = 1− negl(λ). .

where the probability is over the randomness of P and V. Moreover, the prover’s algorithm
initially takes as input only 1λ, and the pair (x,w) is given to P only in the beginning of the
n’th round.

– Delayed-Input Soundness. For any PPT cheating prover P∗ that chooses x∗ (adaptively) after
the first n− 1 messages, it holds that if x∗ /∈ L then

Pr[OutV⟨P∗(x∗),V(x∗)⟩ = 1] = negl(λ) .

where the probability is over the random coins of V.

We now define what it means for an argument to be witness indistinguishable (WI).

17

Definition 10 (Witness Indistinguishability). A delayed-input interactive argument (P,V) for a
language L is said to be witness indistinguishable if for every PPT algorithm V∗ and every pair (w1, w2)
such that RL(x,w1) = 1 and RL(x,w2) = 1,

{
ViewV∗⟨P(x,w1),V

∗(x)⟩
}
λ∈N,
x∈L∩{0,1}λ,
w1∈RL(x)

≈c

{
ViewV∗⟨P(x,w2),V

∗(x)⟩
}
λ∈N,
x∈L∩{0,1}λ,
w2∈RL(x)

.

where ViewV∗⟨P(x,w),V∗(x)⟩ denotes the view of the verifier during the execution of the protocol.

Imported Theorem 1 ([LS91]). Assuming non-interactive commitments there exists 3 round delayed-
input witness indistinguishable proof systems.

As in prior works, we rely on the public coin nature of the protocol in [LS91], i.e. the verifier
messages in the protocol of [LS91] are simply random coins. See Section A.4 for a description of
the protocol along with a high level overview of the properties.
Below we consider a few extensions of the above notion of WI.

Proofs and Statistical WI. WI can be strengthened in two ways: (i) proofs: by requiring that the
soundness holds against unbounded cheating provers; and (ii) statistical WI: the views in Definition
10 are statistically indistinguishable.

Argument/Proof of Knowledge. Soundness of an argument/proof only implies that the verifier
isn’t convinced of a false statement. Proof of knowledge strengthens this requirement to state that if
the verifier accepts, then it must be the case that the prover is in possession of the corresponding NP
witness. We do not formally define the notion here, but note that it is formalized by the existence
of a PPT extractor that has only oracle access (black-box access) to any convincing prover, and is
able to “extract” a witness.

2.7 Non-interactive Witness Indistinguishability (NIWI)

We consider the non-interactive variant of the definition in Section 2.6, with the stronger property
that it a proof, i.e. soundness holds against computationally unbounded cheating provers.

Definition 11 ([BOV03]). A non-interactive witness-indistinguishable proof system NIWI = (NIWI.Prov,
NIWI.Ver) for an NP relation RL consists of two polynomial-time algorithms:

– a probabilistic prover NIWI.Prov(x,w, 1λ) that given an instance x, witness w, and security
parameter 1λ, produces a proof π.

– a deterministic verifier NIWI.Ver(x, π) that verifies the proof.

We make the following requirements:

Completeness for every λ ∈ N, (x,w) ∈ RL,

Pr
[
π ← NIWI.Prov(x,w, 1λ) : NIWI.Ver(x, π) = 1

]
= 1

Soundness for every x /∈ L and π ∈ {0, 1}∗,

NIWI.Ver(x, π) = 0 .

18

Witness Indistinguishability It holds that
{
NIWI.Prov(x,w0, 1

λ)
}
λ,x,
w0,w1

≈c

{
NIWI.Prov(x,w1, 1

λ)
}
λ,x,
w0,w1

,

where λ ∈ N, x ∈ {0, 1}λ, w0, w1 ∈ RL(x).

As stated in the introduction, indistinguishability obfuscation implies non-interactive witness in-
distinguishable proofs, but with a randomized verifier [BP15], which is insufficient for our purpose.
The verifier can be derandomized under a worst-case Nisan-Wigderson [NW94] type derandom-
ization assumption [BV17]. Non-interactive witness indistinguishable proofs with a deterministic
verifier are also known from standard assumptions on bilinear maps [GOS06].

2.8 Collision Resistance against Bounded Non-uniform Adver-
saries

We describe here the notion of keyless collision resistance against quasi-polynomial b-non-uniform
adversaries, extending the definition in [BP04].

Syntax. A keyless collision resistance hash function is associated with an input function ℓ(λ) > λ
and a polynomial time algorithm H such that H(1λ, X) is a deterministic algorithm that takes as
input an X ∈ {0, 1}ℓ(λ) and outputs a hash Y ∈ {0, 1}λ.

Definition 12. We say that H is collision-resistant against quasi-polynomial adversaries if for any b-
non-uniform probabilistic 2poly(log λ)-time A, there exists a negligible function negl, such that for any
λ ∈ N,

Pr
[
(x1, x2)← A(1λ) : x1 ̸= x2,H(1

λ, x1) = H(1λ, x2)
]
≤ negl(λ) .

2.9 Pseudorandom Generators

Definition 13 (Psedudorandom Generators). A deterministic function PRG : {0, 1}λ → {0, 1}p(λ)
is called a pseudorandom generator (PRG) if:

1. (efficiency): PRG can be computed in polynomial time,

2. (expansion): p(λ) > λ,

3.
{
x←$ {0, 1}λ : PRG(x)

}
≈c

{
Up(λ)

}
, where Up(λ) is the uniform distribution over p(λ) bits.

Pseudorandom generators with polynomial stretch as defined above can be constructed assum-
ing one-way functions [HILL99].

2.10 Signature Scheme

An signature scheme [GMR88] consists of three polynomial-time algorithms (Gen,Sign,Vf).

19

– Gen is PPT algorithm that takes as input 1λ and generates a key and verification key. (sk, vk)←
Gen(1λ).

– Sign is a PPT algorithm that computes the signature on a message m. σ := Sign(sk,m).

– Vf is a deterministic algorithm verifies the signature using the verification key. Vf(vk,m, σ)
returns 0 or 1.

Definition 14. A scheme (Gen,Sign,Vf) is a signature scheme that is existentially unforgeable against
chosen message attacks if the following hold.

Correctness For every message m ∈M (message space),

Pr
[
Vf(vk,m, σ) = 1 : (vk, sk)← Gen(1λ), σ ← Sign(sk,m)

]
= 1

Security For any PPT adversary A

Pr

[
A did not query m
Vf(vk,m, σ) = 1

:
(vk, sk)← Gen(1λ)
(m,σ)← ASign(sk,·)(vk)

]
< negl(λ)

where ASign(sk,·) indicates that A has access to an oracle that returns the signature on the
queried message m.

Digital signatures can be constructed assuming only one-way functions [GMR88, Rom90].

2.11 Secure Multiparty Computation

We provide the definition of MPC against malicious adversaries as well as (delayed) semi-malicious
adversaries. Parts of this section have been taken verbatim from [Gol04].

A multi-party protocol is cast by specifying a random process that maps pairs of inputs to pairs
of outputs (one for each party). We refer to such a process as a functionality. The security of a pro-
tocol is defined with respect to a functionality f . In particular, let n denote the number of parties.
An n-party functionality f is a (possibly randomized) mapping of n inputs to n outputs. A multi-
party protocol with security parameter λ for computing a functionality f is a protocol running in
time poly(λ) and satisfying the following correctness requirement: if parties P1, . . . , Pn with inputs
(x1, . . . , xn) respectively, all run an honest execution of the protocol, then the joint distribution of
the outputs y1, . . . , yn of the parties is statistically close to f(x1, . . . , xn).

Defining Security. We assume that readers are familiar with standard simulation-based definitions
of secure multi-party computation in the standalone setting. We provide a self-contained definition
for completeness and refer to [Gol04] for a more complete description. The security of a protocol
(with respect to a functionality f) is defined by comparing the real-world execution of the protocol
with an ideal-world evaluation of f by a trusted party. More concretely, it is required that for
every adversary A, which attacks the real execution of the protocol, there exist an adversary Sim,
also referred to as a simulator, which can achieve the same effect in the ideal-world. Let’s denote−→x = (x1, . . . , xn).

The real execution In the real execution of the n-party protocol π for computing f is executed
in the presence of an adversary A. The honest parties follow the instructions of π. The adversary

20

A takes as input the security parameter k, the set I ⊂ [n] of corrupted parties, the inputs of the
corrupted parties, and an auxiliary input z. A sends all messages in place of corrupted parties and
may follow an arbitrary polynomial-time strategy.

The interaction of A with a protocol π defines a random variable REALπ,A(z),I(k,
−→x) whose

value is determined by the coin tosses of the adversary and the honest players. This random variable
contains the output of the adversary (which may be an arbitrary function of its view) as well
as the outputs of the uncorrupted parties. We let REALπ,A(z),I denote the distribution ensemble
{REALπ,A(z),I(k,

−→x)}k∈N,⟨−→x ,z⟩∈{0,1}∗ .

The ideal execution – security with abort . An ideal execution for a function f proceeds as
follows:

– Send inputs to the trusted party: As before, the parties send their inputs to the trusted party,
and we let x′

i denote the value sent by Pi. Once again, for a semi-honest adversary we require
x′
i = xi for all i ∈ I.

– Trusted party sends output to the adversary: The trusted party computes f(x′
1, . . . , x

′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary.

– Adversary instructs trust party to abort or continue: This is formalized by having the
adversary send either a continue or abort message to the trusted party. (A semi-honest ad-
versary never aborts.) In the latter case, the trusted party sends to each uncorrupted party Pi

its output value yi. In the former case, the trusted party sends the special symbol ⊥ to each
uncorrupted party.

– Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the
values obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf⊥,A(z)(k,
−→x) as

above,and we let {IDEALf⊥,A(z),I(k,
−→x)}k∈N,⟨−→x ,z⟩∈{0,1}∗ where the subscript ”⊥” indicates that the

adversary can abort computation of f .
Having defined the real and the ideal worlds, we now proceed to define our notion of security.

Definition 15. Let k be the security parameter. Let f be an n-party randomized functionality, and π
be an n-party protocol for n ∈ N.

1. We say that π t-securely computes f in the presence of malicious (resp., semi-honest) adversaries
if for every PPT adversary (resp., semi-honest adversary) A there exists a PPT adversary (resp.,
semi-honest adversary) Sim such that for any I ⊂ [n] with |I| ≤ t the following quantity is
negligible:

|Pr[REALπ,A(z),I(k,
−→x) = 1]− Pr[IDEALf,A(z),I(k,

−→x) = 1]|
where −→x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

2. Similarly, π t-securely computes f with abort in the presence of malicious adversaries if for every
PPT adversary A there exists a polynomial time adversary Sim such that for any I ⊂ [n] with
|I| ≤ t the following quantity is negligible:

|Pr[REALπ,A(z),I(k,
−→x) = 1]− Pr[IDEALf⊥,A(z),I(k,

−→x) = 1]|.

21

Security Against (Delayed) Semi-Malicious Adversaries We also define security against semi-
malicious adversaries that are stronger than semi-honest adversaries. A semi-malicious adversary
is modeled as an interactive Turing machine (ITM) which, in addition to the standard tapes, has
a special witness tape. In each round of the protocol, whenever the adversary produces a new
protocol message msg on behalf of some party Pk, it must also write to its special witness tape
some pair (x, r) of input x and randomness r that explains its behavior. More specifically, all of
the protocol messages sent by the adversary on behalf of Pk up to that point, including the new
message m, must exactly match the honest protocol specification for Pk when executed with input
x and randomness r. Note that the witnesses given in different rounds need not be consistent. Also,
we assume that the attacker is rushing and hence may choose the message m and the witness (x, r)
in each round adaptively, after seeing the protocol messages of the honest parties in that round
(and all prior rounds). Lastly, the adversary may also choose to abort the execution on behalf of Pk

in any step of the interaction.
A delayed semi-malicious adversary [BL18] is similar to semi-malicious adversary, except that it

only needs to output the witness (i.e., a defense of honest behavior) in the second last round of the
protocol. We refer the reader to [BL18] for a more detailed discussion.

Definition 16. We say that a protocol π securely realizes f for (delayed) semi-malicious adversaries if
it satisfies Definition 15 when we only quantify over all (delayed) semi-malicious adversaries A.

2.12 Garbled Circuits

Definition 17 (Garbling Scheme). A garbling scheme for circuits is a tuple of PPT algorithms GC :=
(Gen,Garble,Eval) such that”

– ({labw,b}w∈[n],b∈{0,1})← Gen(1λ, n): Garble takes the security parameter 1λ and length of input
for the circuit as input and outputs a set of input labels {labw,b}w∈[n],b∈{0,1}.

– C ← Garble(C, {labw,b}w∈[n],b∈{0,1}): Garble takes as input a circuit C : {0, 1}n → {0, 1}m and
a set of input labels {labw,b}w∈[n],b∈{0,1} and outputs the garbled circuit C.

– y ← Eval(C, labx): Eval takes as input the garbled circuit C, input labels labx corresponding to
the input x ∈ {0, 1}n and outputs y ∈ {0, 1}m.

This garbling scheme satisfies the following properties:

1. Correctness: For any circuit C and input x ∈ {0, 1}n,

Pr[C(x) = Eval(C, labx)] = 1

where ({labw,b}w∈[n],b∈{0,1})← Gen(1λ, n) and C ← Garble(C, {labw,b}w∈[n],b∈{0,1}).

2. Selective Security: There exists a PPT simulator SimGC such that, for any PPT adversary A,
there exists a negligible function µ(.) such that,

|Pr[ExperimentA,SimGC
(1λ, 0) = 1]− Pr[ExperimentA,SimGC

(1λ, 1) = 1]| ≤ µ(λ)

where the experiment ExperimentA,SimGC
(1λ, b) is defined as follows:

22

(a) The adversary A specifies the circuit C and an input x ∈ {0, 1}n and gets C and l̂ab, which
are computed as follows:

– If b = 0:
– ({labw,b}w∈[n],b∈{0,1})← Gen(1λ, n)

– C ← Garble(C, {labw,b}w∈[n],b∈{0,1})

– If b = 1:

– (C, l̂ab)← SimGC(1
λ, C(x))

(b) The adversary outputs a bit b′, which is the output of the experiment.

Garbled circuits can be constructed from any symmetric key encryption scheme[Yao82a].

2.13 Oblivious Transfer

Here we follow [ORS15]. Oblivious Transfer (OT) is a two-party functionality FOT , in which a
sender S holds a pair of strings (l0, l1), and a receiver R holds a bit b, and wants to obtain the
string lb. The security requirement for the FOT functionality is that any malicious receiver does not
learn anything about the string l1−b and any malicious sender does not learn which string has been
transferred. This security requirement is formalized via the ideal/real world paradigm. In the ideal
world, the functionality is implemented by a trusted party that takes the inputs from S and R and
provides the output to R and is therefore secure by definition. A real world protocol Π securely
realizes the ideal FOT functionalities, if the following two conditions hold. (a) Security against a
malicious receiver: the output of any malicious receiver R⋆ running one execution of Π with an
honest sender S can be simulated by a PPT simulator S that has only access to the ideal world
functionality FOT and oracle access to R⋆. (b) Security against a malicious sender. The joint view
of the output of any malicious sender S⋆ running one execution of Π with R and the output of R
can be simulated by a PPT simulator S that has only access to the ideal world functionality FOT
and oracle access to S⋆. We consider the weaker definition of OT introduced in [ORS15] which is
referred as one-sided simulatable OT. In this we do not demand the existence of a simulator against a
malicious sender, but we only require that a malicious sender cannot distinguish whether the honest
receiver is playing with bit 0 or 1. That is, we require that for any PPT malicious sender S⋆ the
view of S⋆ executing Π with the receiver R playing with bit 0 is computationally indistinguishable
from the view of S⋆ where R is playing with the bit 1.

Definition 18 ([ORS15]). Let FOT be the Oblivious Transfer functionality as described previously.
We say that a protocol Π securely computes FOT with one-sided simulation if the following holds:

1. For every non-uniform PPT adversary R⋆ controlling the receiver in the real model, there exists
a non-uniform PPT adversary S for the ideal model such that: {REALΠ,R⋆(z)(1

λ)}z∈{0,1}λ ≈
IDEALFOT ,S(z)(1

λ)}z∈{0,1}λ ,

where REALΠ,R⋆(z)(1
λ) denotes the distribution of the output of the adversary R⋆ (controlling

the receiver) after a real execution of protocol Π, where the sender S has inputs l0, l1 and the
receiver has input b. IDEALf,S(z)(1

λ) denotes the analogous distribution in an ideal execution
with a trusted party that computes FOT for the parties and hands the output to the receiver.

23

2. For every non-uniform PPT adversary S⋆ controlling the sender it holds that:

{ViewR
Π,S⋆(z)(l0, l1, 0)}z∈{0,1}⋆ ≈ {ViewR

Π,S⋆(z)(l0, l1, 1)}z∈{0,1}⋆

where ViewR
Π,S⋆(z) denotes the view of adversary S⋆ after a real execution of protocol Π with the

honest receiver R.

2.14 Blockchain Model

In this section, we describe the model for the Blockchain, that will be used in Chapter 5.

Blockchains. In a blockchain protocol, the goal of all parties is to maintain a global ordered set
of records that are referred to as blocks. New blocks can only be added using a special mining
procedure that simulates a puzzle-solving race between participants and can be run by any party
(called miner) executing the blockchain protocol. Presently, two broad categories of puzzles are
used: Proof-of-Work (PoW) and Proof-of-Stake (PoS).

Following the works of [KZZ16, BMTZ17, BGK+18], we model the blockchain as a global ledger
Gledger that internally keeps a state state which is the sequence of all the blocks in the ledger. Parties
interact with the ledger by making one of many queries described by the functionality.

We reproduce here the ledger functionality described in [BMTZ17] with a few minor modifica-
tions to be described subsequent to the description.

The ledger maintains a central and unique permanent state denoted by state. When data/trans-
actions are sent to Gledger, they are validated using a Validate predicate and added to a buffer buffer.
The buffer is meant to indicate those transactions that are not sufficiently deep to become perma-
nent. The Blockify function creates a block including some transactions from buffer and extends
state. The decision of when the state is extended is left to the adversary. The adversary proposes
a next block candidate NxtBC containing the transactions from the buffer it wants included in the
state. An empty NxtBC is used to indicate that the adversary does not want the state to be up-
dated at the current clock tick. To restrict the behavior of the adversary, there is a ledger algorithm
ExtendPolicy that enforces a state-update policy restriction. See appendix A.1 for further discussion
on the ExtendPolicy.

Each registered party can see the state, but is guaranteed only a sufficiently long prefix of it. This
is implemented by monotonically increasing pointers pti, defining the prefix state|pti , for each party
that the adversary can manipulate with some restrictions. This can be viewed as a sliding window
over the state, wherein the adversary can only set pointers to be within this window starting from
the head of state. The size of the sliding window is denoted by windowSize. It should be noted
that the prefix view guarantees that the value at position k will appear in position i in every party’s
state.

A party is said to be desynchronized if the party recently registered or recently got de-registered
from the clock. At this point, due to network delays, the adversary can make the parties believe
in any value of the state up until the party gets messages from the network. This time period is
denoted by the parameter Delay, wherein the desynchronized parties are practically under the con-
trol of the adversary. A timed honest input sequence

−→I T
H , is a vector of the form ((x1, P1, τ1), · · · ,

(xm, Pm, τm)), used to denote the inputs received by the parties from the environment, where Pi is
the player that received the input and τi was the time of the clock when the environment handed

24

the input to Pi. The ledger uses the function predict-time to ensure that the ideal world execu-
tion advances with the same pace (relative to the clock) as the protocol does. −→τ state denotes the
block-insertion times vector, which lists the times each block was inserted into state.

Functionality Gledger

Gledger is parameterized by found algorithms, Validate, ExtendPolicy, Blockify, and predict-time: win-
dowSize, Delay∈ N. The functionality manages variables state,NxtBCbuffer, τL, and −→τ state as described
above. The variables are initialized as follows: state := −→τ state := NxtBC := ε, buffer := ∅, τL = 0.

The functionality maintains the set of registered parties P, the subset of honest parties H ⊆ P and the
subset of de-synchronized honest parties PDS ⊂ H. The sets P,H,PDS are all initially set to ∅. When
a new honest party is registered at the ledger, if it is registered with the clock already then it added to
the party sets H and P and the current time of registration is also recorded if the current time τL > 0, it
is also added to PDS . Similarly, when a party is deregistered, it is removed from both P (and therefore
also from PDS or H). The ledger maintains the invariant that it is registered (as a functionality) to the
clock whenever H ̸= ∅.

For each party Pi ∈ P the functionality maintains a pointer pti (initially set to 1) and a current-state
view statei := ε (initially set to empty). The functionality also keeps track of the timed honest-input
sequence in a vector

−→
I T

H (initially
−→
I T

H := ε)

Upon receiving any input I from any party or from the adversary, send (CLOCK-READ, sidC) to Gclock
and upon receiving the response (CLOCK-READ, sidC , τ), set τL := τ and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered continu-
ously since time τ ′ < τL − Delay (to both ledger and clock). Set PDS := PDS \ P̂.

2. If I was received from an honest party Pi ∈ P:

(a) Set
−→
I T

H :=
−→
I T

H ||(I, Pi, τL);

(b) Compute

−→
N = (

−→
N 1, · · · ,

−→
N ℓ) := ExtendPolicy

(−→
I T

H , state,NxtBC, buffer,−→τ state

)
and if

−→
N ̸= ε set state := state||Blockify(

−→
N 1)|| · · · ||Blockify(

−→
N ℓ) and −→τ state := −→τ state||τ ℓ

L

where τ ℓ
L = τL|| · · · ||τL.

(c) If there exists Pj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then set
ptk := |state| for all Pk ∈ H \ PDS .

(d) If
−→
N ̸= ε, send (state) to A; else send (I, Pi, τL) to A

3. Depending on the above input I and its sender’s ID, Gledger executes the corresponding code from
the following list:

– Submitting data:
If I = (SUBMIT, sid, x) and is received from a party Pi ∈ P or fromA (on behalf of corrupted
party Pi) do the following

(a) Choose a unique identifier uid and set y := (x, uid, τL, Pi)

25

(b) buffer := buffer ∪ {y}.
(c) Send (SUBMIT, y) to A if not received from A.

– Reading the state:
If I = (READ, sid) is received from a party Pi ∈ P then set statei := state|min{pti,|state|} and
return (READ, sid, statei) to the requestor. If the the requestor is A then send (state, buffer).

– Maintain the ledger state:

If I = (MAINTAIN-LEDGER, sid) is received by an honest Pi ∈ P and predict-time(
−→
I T

H) =
τ̃ > τL then send (CLOCK-UPDATE, sidC) to Gclock. Else send I to A.

– The adversary proposing the next block:
If I = (NEXT-BLOCK, hflag, (uid1, · · · , uidℓ)) is sent from the adversary, update NxtBC as
follows:

(a) Set listOfUid← ε

(b) For i ∈ [ℓ], if there exists y := (x, uid, τL, Pi) ∈ buffer with ID uid = uidi then set
listOfUid := listOfUid||uidi.

(c) Finally, set NxtBC := NxtBC||(hflag, listOfUid).

– The adversary setting state-slackness:
If I = (SET-SLACK, (Pi1 , p̂ti1), · · · , (Piℓ , p̂tiℓ)) with {Pi1 , · · · , Piℓ} ⊆ H \ PDS is received
from the adversary, do the following:

(a) If ∀j ∈ [ℓ] : |state| − p̂tij ≤ windowSize and p̂ti1 ≥ |stateij |, set ptij := p̂tij for every
j ∈ [ℓ].

(b) Otherwise set ptij := |state| for all j ∈ [ℓ]

– The adversary setting the state for desynchronized parties:
If I = (DESYNC-STATE, (Pi1 , state

′
i1
), · · · , (Pi1 , state

′
iℓ
)) with {Pi1 , · · · , Piℓ} ⊆ PDS is re-

ceived from the adversary, set set stateij := state′ij for every j ∈ [ℓ].

The work of Badertscher et al [BMTZ17] show that under appropriate assumptions, Bitcoin
realizes the ledger functionality described enforcing the ExtendPolicy described in appendix A.1.
For convenience we’ve made a few syntactic changes to the Gledger functionality as described in
[BMTZ17]:

– Firstly, the Validate predicate is not relevant in our setting since parties will use ledger to
post data, and these should be trivially validated. Hence, we’ve abstracted out the Validate
predicate from the description of the model.

– We require that the adversary cannot invalidate data sent by other parties, thereby denying
data from ever making it on to the ledger. For transactions, the adversary can invalidate hon-
est transactions. This can be remedied using a strong variant of Gledger described in [BMTZ17].

– Every time that the size of the state increases, the adversary is notified of the new state by
Gledger.

The changed functionality the same properties of the ideal Gledger functionality as described in
[BMTZ17].

26

Remarks. We point out a few properties of the Gledger functionality and its use case in our setting.

– As described in [BMTZ17], we can achieve a strong liveness guarantee by slightly modifying
the above ledger functionality which guarantees that posted information will make it on to
the view of other parties within ∆ := 4 · windowSize number of blocks (relative to the view of
the submitting party).

– There are occasions wherein we will run parallel executions of the adversary, and one thread
will be assigned to be the main execution thread while the others will be denoted as ‘look-
ahead” threads. In an effort to make the adversary oblivious to rewinding, we cannot allow
messages from these “look-ahead” threads to make its way to Gledger. Drop messages sent
by the adversary to Gledger and will have to abort the thread if Gledger sends a state with an
increased size.

– We require that for a READ query, buffer is efficiently simulatable, while state is not. This
is a reasonable assumption to make given that the state indicates the permanent component
of the blockchain, and simulating this would requiring forging the state. On the other hand,
the buffer consists of outstanding queries from both honest and adversarial parties. From
the description of Gledger, each time a SUBMIT query is made to Gledger, the information is
passed along to the adversary, and the adversary’s own outstanding queries are known. Look-
ing ahead, a READ query can be answered without making a query to Gledger. The honest
outstanding queries are replayed on each thread since they could not have changed across
threads, while the adversarial queries local to that thread are known to the simulator.

– We wait for Delay time before the start of any protocol to ensure all parties are synchronized.
Moving ahead, for simplicity of exposition, the notion of de-synchronised parties is ignored.

– While the works of [KZZ16, BMTZ17, BGK+18] use Gclock functionality, we do not require
parties to have access to a clock and can consider this to be local to Gledger. In fact our positive
results do not rely on parties having access to a clock.

– Additionally, we require that a locally initialized Gledger is efficiently simulatable to any adver-
sary that does not have additional access to the global Gledger. These local Gledger will be useful
in establishing certain properties of our protocol.

Blockchain active (BCA) adversaries. Consider an adversary that has access to Gledger, and thus
can post to and access the state (the entire blockchain) at any time. In fact its strategy in any
protocol may be a function of the state. We refer to any such adversary that actively uses the Gledger
as a blockchain active adversary (BCA).

Simulation in the Blockchain-hybrid model. Moving ahead, we interchangeably use blockchain-
hybrid and Gledger-hybrid, while preferring the later for our formal descriptions. A simulator has
the same power as other parties while accessing the global functionality Gledger. In addition, it acts
as an interface between the party and Gledger, and thus can choose what messages between the
party and the functionality it wants delivered. This is unlike the setting considered in [CGJ+17,
GG17] where the simulator has control of the blockchain, and thus can “rewind” the blockchain
by discarding and re-creating blocks. This is reminiscent of the difference between simulation

27

in Universal Composability (UC) framework [Can01] and simulation in the global UC framework
[CDPW07, CJS14, HPV16].

Our simulator can use arbitrary polynomial amount of parallelism. Although arbitrary, the poly-
nomial is fixed in advance. We will use this modeling to run parallel invocations of the adversary
by making copies.

At this point we would like to emphasize the need for considering this model for the simulator.
We start off by mentioning that any party can use the state obtained from Gledger as the basis for its
execution. Importantly, the adversary’s view is now no longer determined solely by the message it
receives from the simulator since the Gledger state gives it an additional auxiliary input. In the plain
model, if we wanted to rewind the adversary back to a specific point in the execution, we could
restart the adversary and send the same messages up to the specific point. And we were guaranteed
that the adversary’s responses would be identical. But now since the adversary has access to Gledger,
its responses could depend on the state of Gledger.

Let us consider such an adversary. Now when the simulator tries to restart the adversary, suppose
the state has expanded since. Even if the simulator provides the same messages as a previous
execution, the adversary’s behavior now may be drastically different and of potentially no use to
the simulator. The simulator could ensure identical behavior by providing it the earlier truncated
view of the state, but moving forward with this execution would be problematic since any message
that the adversary wants to post will no longer appear on the state within the promised time period,
and thus the adversary will notice that the Gledger no longer follows the model specified. Thus it is
imperative that executions are run in parallel to ensure that views across multiple threads are
identical if the same inputs are provided.

The above modeling is crucial for rewinding when we prove security of our protocols. We will
work with this modeling unless otherwise specified. Looking ahead, our construction of the zero-
knowledge proof in the non-black-box setting will use a modified variant of this model.

Security. Since the distinguisher attempting to distinguish between views of the adversary in the
real and simulated setting has access to Gledger, the simulator cannot create an isolated view of Gledger
for the adversary. But as it turns out, the ability to initialize a local Gledger is a useful property useful
in certain situations that we will leverage in our work.

Protocols in the plain model are a reference to any protocol that does not require its participants
to interact with Gledger in any form. These protocols are proven secure without considering the
presence of Gledger. Given such a protocol, a blockchain active adversary may try to leverage access
to this global functionality Gledger to gain undue advantage over the setting where it did not have
such access. We are interested in such adversaries since we want to see how the security of known
protocols or primitives fare when the adversary has access to the Gledger.

28

Chapter 3

Deterministic Prover
Zero-Knowledge

3.1 Overview

We now give an overview of the main ideas and techniques behind our results. For providing
context to our results, we provide a high level overview of the [GO94] impossibility in Section A.3.

The Deterministic-Prover Zero-Knowledge Protocol. Our starting point is the protocol against
honest verifiers based on witness encryption [FNV17]. In their protocol, the verifier simply sends
a witness encryption of a random message u with respect to the statement x ∈ L to be proven,
and expects to get u back from the prover. Witness encryption guarantees that a prover that has a
corresponding witness w, can obtain u and convince the verifier. However, if the statement is false,
namely x /∈ L, u is hidden, and soundness is guaranteed.

While honest verifiers are easy to simulate in this scheme, it is not clear how to simulate ma-
licious verifiers. For this purpose, we aim to add to the protocol a trapdoor way of obtaining u. A
simulator that has the code of the verifier should be able to extract the message u. In contrast, a
malicious prover who doesn’t have the code (specifically, the verifier’s randomness) should still fail
to find u when x /∈ L.

Explainable Verifiers. To explain the idea behind the protocol in its simplest form, let us start
by assuming that the first message v sent by verifier to the prover is always explainable [BKP19].
That is, there exist honest verifier coins r that explain this message as an honest verifier message
v = V(x; r). The difference between this setting and the honest verifier setting is that the explaining
coins r may be distributed arbitrarily and also computationally hard to find.

Our basic idea is for the verifier to send the prover yet another witness encryption of u where the
witness is basically the malicious verifier code V∗. Our realization of this idea is inspired by Barak’s
uniform simulation technique [Bar01]. Let b be the given bound on the description size of the
verifier including its (bounded) auxiliary input hardwired. Then, the honest verifier samples a long
random string R← {0, 1}b+2λ. Then in addition to the witness encryption of u under the statement
x ∈ L, it sends a witness encryption of u under the statement:

29

“There exists a program Π of size b+ λ (namely short) that outputs R.”

To argue that the protocol remains sound, we note that except with negligible probability 2−λ

over the choice of r, such a short program does not exist. In this case, witness encryption will guar-
antee that u remains hidden and soundness is preserved. Furthermore, a simulator in possession
of the b-size code V∗ of the malicious verifier can now use it to simulate. Specifically, let ℓ be the
amount of coins r∗ used by V∗, then the simulator will sample r∗ using a pseudorandom generator
that stretches a seed s∗ of length ≈ λ to a pseudorandom r∗ of length ℓ. Looking at the string R
that V∗(x; r∗) outputs, the simulator now possesses a size-(b + λ) program Π that computes R —
the code of V∗ with the seed s∗ hardwired. This in turn leads to valid simulation.

Witness Encryption for Unbounded NP Relations and IO. One thing to notice about the latter
protocol is that in fact the existence of program Π that outputs R is not an NP statement, unless
we restrict the running time of Π to some specific polynomial. However, while the non-uniform
description size (equivalently, auxiliary input size) of the malicious verifier V∗ is a-priori bounded,
its running time is not bounded by any specific polynomial.

Accordingly, we need a strong notion of witness encryption for unbounded non-deterministic
relations. Specifically, encryption under a statement x should take time polynomial in |x| (and
the security parameter), and not depend on the time required to verify a witness for x. In con-
trast, decrypting with a witness w should take time proportional to the time required to verify w.
Such witness encryption schemes directly follow from known indistinguishability obfuscation (IO)
schemes for Turing Machines, which are in turn constructed from subexponentially-secure IO for
circuits [KLW15, BCG+18, GS18a].

Malicious Verifiers. Having constructed a protocol against explainable verifiers, we use compilers
from the literature to turn it into a protocol against arbitrary verifiers. These compilers use non-
interactive witness-indistinguishable proofs (NIWIs) in order to enforce explainable behavior on the
verifier’s side. Being non-interactive verifying, these proofs require no randomness from the honest
zero-knowledge prover.

The first such compiler [BKP19] works for NP ∩ co-NP and requires no additional hardness
assumptions. The second compiler is taken from [BP04] (where it was used in a different context)
and relies in addition on keyless hash functions that are collision resistant against attackers with
bounded auxiliary input and quasipolynomial running time, as well as subexponentially secure
commitments (which in turn follow from subexponentially secure IO and one-way functions). In the
body, we reanalyze these compilers to show that they can be used to enforce robust explainability,
which roughly means that the verifier’s messages are almost always explainable on any efficiently
samplable distribution on its coins, a property required for our simulation strategy. See more details
in Section 3.3.

From Deterministic-Prover Zero Knowledge to Predictable Arguments. We now explain how
deterministic-prover zero knowledge implies predictable arguments, which in turn imply witness
encryption (as well as the additional properties stated in Corollary 2). We start with an oversim-
plified transformation that captures the main idea, but does not fully work, and then explain how
to augment it. This oversimplified transformation, in fact, starts from deterministic-prover honest-
verifier zero knowledge.

Let (P,V) be our argument, and let Sim be the honest-verifier simulator. We consider a new
verifier V′ that works as follows. It applies the simulator Sim(x) to obtain simulated randomness r̃

30

for the honest verifier along with simulated prover messages p̃1, . . . , p̃k. The verifier V′ then certifies
that the prover messages lead to an accepting transcript with respect to the verifier coins r. If they
do not lead to an accepting transcript, V′ automatically rejects; otherwise, it interacts with the
prover, and rejects the moment it receives a message pi ̸= p̃i. The described protocol is predictable
by construction. Also, since we do not change the honest prover, it is zero knowledge against the
same class of verifiers as the original protocol. We now turn to argue that the protocol is complete
and sound.

To see that the protocol has almost perfect completeness, consider a distinguisher that has
the witness w hardwired. Given a transcript p1, . . . , pk and verifier coins r, it can perfectly emu-
late a conversation between the deterministic prover P(x,w) and honest verifier V(x; r) and check
whether the produced prover messages are consistent with the input transcript p1, . . . , pk, and that
the transcript is accepting. We deduce that with overwhelming probability the simulator produces
simulated messages p̃1, . . . , p̃k, and randomness r, such that the honest prover would produce the
same messages, and the transcript will be accepting. To see soundness, notice that if the simulated
coins r are pseudorandom and the simulated prover messages p̃1, . . . , p̃k are accepting, then by
the soundness of the original protocol (P,V), it should be hard for an efficient prover to produce
messages consistent with p̃1, . . . , p̃k (or with any accepting transcript).

Above, when proving soundness we actually made the implicit assumption that the honest veri-
fier simulator Sim(x) produces pseudorandom verifier coins, even when given a no instance x /∈ L.
Indeed, with respect to random, or pseudorandom, coins, we can argue that it is hard to find ac-
cepting transcripts. While this is a natural property, it does not follow directly from honest verifier
zero knowledge. To circumvent this difficulty, we slightly augment the above transformation, while
relying on zero-knowledge against (not necessarily honest) bounded-auxiliary-input verifiers.

Specifically, the verifier V′ uses a pseudorandom generator to sample coins r for the honest
verifier V, using a short seed s. It then applies the same procedure as above, except that it runs the
simulator Sim(Vs, x) for the deterministic verifier Vs that first derives the coins r from the seed s,
and then applies V. By choosing an appropriate pseudorandom generator, we can guarantee that the
non-uniform description of Vs is short enough. This transformation guarantees that the simulated
coins are pseudorandom, even for a no instance, and allows the above proof to go through. The
necessity of zero-knowledge to hold even for verifiers that are not necessarily honest comes from
the fact that our description of Vs deviates from the honest verifier strategy. We give another
construction of predictable arguments from deterministic-prover arguments that are only honest-
verifier zero knowledge, provided that the arguments supports expressive enough languages. See
Section 3.6 for details.

A Word on Two-Message Laconic Arguments. As stated in Corollary 2, we use the implication
to predictable arguments to also derive that any deterministic-prover zero knowledge argument
for bounded-auxiliary-input verifiers can be made two message and laconic. This corollary is ob-
tained by applying as is general transformations on predictable arguments [FNV17]. The only thing
we need to prove is that these transformations preserve zero knowledge. The only hurdle here is
that the mentioned transformations involve parallel repetition for the sake of soundness amplifica-
tion. We observe that (unlike many-round zero knowledge) two-message zero knowledge against
bounded-auxiliary-input verifiers is closed under parallel repetition.

On Deterministic Prover Zero-Knowledge Proofs. While our results (in conjunction with prior
works) provide a complete picture of deterministic zero-knowledge arguments, our results do not

31

have any bearing on deterministic zero-knowledge proofs, where soundness is required to hold
against unbounded provers. Completing the picture for proofs remains an interesting open problem.

3.2 Definitions

In this work, we will consider PPT machines with both, bounded and unbounded non-uniform
auxiliary input. For simplicity of notation, rather than considering explicit auxiliary input in our
definitions, we consider two basic notions of non-uniformity. The corresponding zero knowledge
definition will in particular capture the auxiliary input setting. See Remark 1. The first notion, of
non-uniform PPT has already been described in Chapter 2. Here we focus on the second notion,
b-non-uniform PPT.

b-non-uniform PPT: These are PPT machines with non-uniform description of size b(λ) and
arbitrary polynomial running time (possibly larger than b(λ)). Formally, a b-non-uniform PPT
M = {Mλ}λ is a family of probabilistic Turing machines (one for each λ), where |Mλ| ≤ b(λ) and
there exists a polynomial poly, such that the running time of Mλ is bounded by poly(λ).

In both of the notions, we often omit from Mλ the subscript λ when it is clear from the context.
If we simply say a PPT machine, we mean a uniform one.

3.2.1 Deterministic-Prover Zero Knowledge Against Bounded-Auxiliary-Input
Verifiers

We define the notion of deterministic-prover zero-knowledge arguments against verifiers with bounded
auxiliary-input (DPZK). We shall denote by OutA⟨A(a), B(b)⟩ the output of party A on execution
of the protocol between A with input a, and B with input b. By ViewA⟨A(a), B(b)⟩, we denote the
view of party A consisting of the protocol transcript along with its random tape.

Definition 19. An interactive protocol (P,V) between a deterministic polynomial time prover P and
PPT verifier V, for a language L is a deterministic prover b-bounded-auxiliary-input zero knowledge
argument if the following holds.

Completeness: For every x ∈ L,

Pr[OutV⟨P(x,w),V(x)⟩ = 1] = 1 .

Soundness: For any non-uniform PPT P∗, there exists a negligible function negl(·) such that for all
λ ∈ N and x ∈ {0, 1}λ \ L,

Pr[OutV⟨P∗,V(x)⟩ = 1] ≤ negl(λ) .

Zero Knowledge: There exists a PPT simulator Sim, such that for every b-non-uniform PPT verifier
V∗ of running time at most t(λ),

{
ViewV∗⟨P(x,w),V∗⟩

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

≈c

{
Sim(V∗, 1t, x)

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

.

32

Remark 1 (Universal Simulation). In the above definition, there exists one universal simulator Sim
that gets the code of the verifier as input. We note that this definition is known [GO94] to imply
the alternative definition of (bounded) auxiliary-input zero knowledge that requires that any for any
t-time V∗ there is a PPT simulator SimV∗ such that given (bounded) auxiliary input z, SimV∗(x, z, 1t)
simulates V∗(z).

See Section A.2 for a discussion about the various notions of zero-knowledge.

3.2.2 Explainable Verifiers

We define here the a variant of the notion of explainable verifiers [BKP19] called robustly-explainable
verifiers. Roughly speaking, explainable verifiers are ones whose messages almost always lie in the
support of the honest verifier messages (or are abort). Robustly-explainable verifiers are such where
this occurs when they use random coins sampled from an arbitrary efficient sampler (and not nec-
essarily the uniform distribution).

Definition 20 (Explainable Message). Let ⟨P,V⟩ be a two-message protocol. We say that a given
message m is explainable with respect to x, if there exist honest verifier coins r such that m ∈
{V (x; r),⊥}.

Definition 21 (Robustly-Explainable Verifier). Let ⟨P,V⟩ be a protocol. A b-non-uniform PPT
verifier V∗ using ℓ(λ) random coins is robustly-explainable if for any PPT sampler R on ℓ(λ) bits,
there exists a negligible negl(λ) such that for any λ ∈ N and x ∈ λ,

Pr
[
r ← R(1λ),m = V∗(x; r) : m is explainable

]
≥ 1− negl(λ) .

3.3 A Deterministic-Prover Zero-Knowledge Protocol

In this section we present our deterministic prover zero knowledge (DPZK) protocol. As explained
in the introduction, we start by describing the protocol for robustly-explainable verifiers. We then
show how to compile this protocol to one that is secure against malicious verifiers.

3.3.1 DPZK for Robustly-Explainable Verifiers

We use the following components for the deterministic prover zero knowledge (DPZK) protocol for
an NP language L against b-non-uniform explainable verifiers.

– A witness encryption scheme (WE.Enc,WE.dec) for language L.

– An indistinguishability obfuscation (IO) scheme iOM for Turing Machines (TM).

Additionally, we will use the machine described below that outputs the hardcoded secret u given as
input the description of a “short” Turing machine that outputs a hardcoded public value R.

33

Machine: Prog

Hardcoded: R, u
Input: M ∈ {0, 1}ρ(λ)

if M outputs R
output u

else
output ⊥

In what follows, let ρ(λ) = b(λ) + λ + ω(1), ℓ(λ) = ρ(λ) + λ. The protocol is described in Figure
3.1. We prove the properties of the protocol below.

Completeness. Completeness follows from the correctness of witness encryption.

Soundness. We now prove that the above protocol is sound against computationally bounded
provers.

Proposition 1. Assuming security of the indistinguishability obfuscation scheme and the witness en-
cryption scheme, the protocol is sound.

Proof. We consider a sequence of hybrids transitioning from the real protocol to an ideal protocol
where the probability that the prover convinces the verifier of accepting is clearly negligible.

Hyb0: This is the real protocol.

Hyb1: In this hybrid, we modify the program Prog to Prog′ that always output ⊥.

By our choice of parameters and a union bound, the probability that there exists a machine
M ∈ {0, 1}ρ that outputs R is at most 2ρ−ℓ = 2−λ. Therefore, except with negligible probabil-
ity Prog and Prog′ are functionally equivalent. The indistinguishability of Hyb1 and Hyb0 then
follows from the indistinguishability of the IO scheme.

Hyb2: In this hybrid, we additionally change the ciphertext ct of the witness encryption scheme to
be the encryption of 0.

Since x /∈ L, the indistinguishability between Hyb2 and Hyb1 follows from the security of the
witness encryption scheme.

It is left to observe that in Hyb2 the prover obtains no information about u, and thus convinces
the verifier with probability at most 2−λ.

Zero Knowledge. We prove

Proposition 2. Assuming the existence of pseudorandom generators, the protocol is zero knowledge
against b-non-uniform verifiers.

34

Protocol: DPZK for robustly-explainable verifiers

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Verifier V computes the first message as

(a) R←$ {0, 1}ℓ(λ)

(b) t := λlog λ

(c) u←$ {0, 1}λ

(d) P̃rog← iOM
(
1λ, 1ρ, 1log t,Prog [R, u]

)

(e) ct←WE.Enc(u, x)

send (R, ct, P̃rog) to the prover P.

2. Prover P computes the second message as

(a) ũ := WE.dec(ct, x, w)

send ũ to the verifier V.

3. Verifier V performs the check

(a) if ũ = u, accept. Else, reject.

Figure 3.1: Deterministic prover zero-knowledge for robustly-explainable verifiers.

Proof. We describe the simulation strategy below. In what follows V∗ is a b-non-uniform malicious
verifier of polynomial running time at most t(λ). Additionally, let k be the amount of random coins
r∗ used by V∗. The simulator Sim will use a PRG PRG : {0, 1}λ 7→ {0, 1}k.

Sim(V∗, 1t, x):

1. Construct verifier V∗
s that has the seed s hardwired. V∗

s computes PRG(s) and uses it as
random coins for V∗. Additionally, V∗

s truncates V∗’s output to R.

2. Initialize V∗ with random coins PRG(s).

3. Given P̃rog from V∗, use the description of V∗
s as input to P̃rog and obtain u.

35

4. u is then used as the simulated prover message, along with verifier randomness PRG(s).

First, consider an execution between the prover and augmented verifier ⟨P(x,w),V∗
s⟩, and let v

and p denote the verifier and prover messages in such an execution. Then by pseudorandomness of
PRG,

ViewV∗⟨P(x,w),V∗⟩ ≈c p,PRG(s) .

Next, by the fact that V∗ is robustly explainable, we know that except with negligible probability, v =

(R, ct, P̃rog) is explainable; namely, has the structure prescribed by the honest verifier algorithm.
Noting that V∗

s is a program of length b + λ + O(1) < ρ(λ) and running time at most t(λ) that
outputs R. By the fact that v is explainable, P̃rog(V∗

s) = WE.dec(ct, x, w). It follows that

p,PRG(s) ≈s Sim(V∗, 1t, x) ,

and overall
ViewV∗⟨P(x,w),V∗⟩ ≈c Sim(V∗, 1t, x) ,

as required.

3.3.2 From Explainable to Malicious Verifiers

In this section we give generic compilers going from robust-explainable to malicious verifiers. These
compilers were constructed in [BKP19] where they were used to enforce explainability and in
[BP04] where they were used in a different context. We prove that these compilers, in fact, enforce
robust explainability. The statements, and correspondingly the underlying assumptions, change
based on whether we want a DPZK for NP ∩ co-NP, or for all of NP. We discuss the two cases
separately.

3.3.2.1 DPZK for NP ∩ co-NP

We consider languages L ∈ NP ∩ co-NP, which in turn means that in addition to relation RL, there
is also a NP-relation RL to certify that a statement x /∈ L.
We use the following primitives in our construction:

– A two-message deterministic-prover zero-knowledge (DPZK) protocol (eP, eV) secure against
robustly-explainable verifiers. Let the verifier and prover messages be denoted by v and p,
respectively.

– A non-interactive witness indistinguishable proof (NIWI) (NIWI.Prov,NIWI.Ver) for the lan-
guage

LNIWI =
{
(v, x)

∣∣∣ ∃(r, w̄) s.t. v = eV(x; r) OR RL(x, w̄) = 1
}

,

namely, either the verifier’s message is explainable, or the statement is not in the language.
Henceforth, we shall refer to the second half of the ‘OR’ statement, that the statement is not
in the language, to be the trapdoor statement.

36

Protocol: (P,V) for L ∈ NP ∩ co-NP

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Verifier V computes the first message as

(a) r ←$ {0, 1}p(n)

(b) v := eV(x; r)

(c) xNIWI := (v, x)

(d) wNIWI := (r,⊥)
(e) wi← NIWI.Prov(xNIWI, wNIWI)

send (v,wi) to the prover P.

2. Prover P computes the second message as

(a) x̃NIWI := (v, x)

(b) if NIWI.Ver(x̃NIWI,wi) ̸= 1, output ⊥.

(c) p := eP(x,w, v).

send p to the verifier V.

3. Verifier V performs the check

(a) if eV(x, p; r) = 1, accept. Else, reject.

Figure 3.2: Deterministic-prover zero knowledge for L ∈ NP ∩ co-NP.

The protocol is presented in Figure 3.2.

Completeness. Completeness follows directly from the completeness of the underlying protocol
and the NIWI proof.

Zero Knowledge. We show how any b-non-uniform malicious verifier V∗ for the above protocol can
be converted to a robustly-explainable b+O(1)-non-uniform verifier against the original protocol.

Claim 1. There exist an efficient simulator S and a verifier eV∗ such that

37

1. eV∗ is a robustly explainable verifier against ⟨eP, eV⟩.

2. eV∗ is (b+O(1))-non-uniform and efficiently constructable from eV∗.

3. For every x ∈ L,
ViewV∗⟨P(x,w),V∗⟩ ≡ S(VieweV∗⟨eP(x,w), eV∗⟩) .

Proof. We construct S, eV∗.

eV∗:

1. Emulates V∗ and obtains (v,wi).

2. If wi is not a valid proof for the statement (v, x), send eP the message ⊥.

3. Else, send eP v, and get p.

4. Complete emulation of V∗ with message p.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the randomness of eV∗,

2. as well as the received prover message p (possibly ⊥).

The third property asserted in the claim follows by construction of S, eV∗ and the fact that
the prover P checks on its own whether the verifier’s proof is accepting. It is left to see that eV∗

is robustly explainable, (b + O(1))-non-uniform, and efficiently constructable from V∗. Robust
explainability follows directly by the (unconditional) soundness of the NIWI — eV∗ either outputs
an explainable message or ⊥. (b+O(1))-non-uniformity and efficient construction follow from the
fact that V∗ is b-non-uniform and eV∗ uses it as a black box and described by the four code lines
above.

Claim 1 directly gives rise to a zero knowledge Sim for the protocol (P,V). In what follows, let
eSim be the simulator of the underlying DPZK protocol against robustly-explainable verifiers.

Sim(V∗, 1t, x):

1. Construct the explainable verifier eV∗.

2. Output S(eSim(eV∗, 1t, x).

The validity of the simulator Sim follows directly from that of eSim and Claim 1.

Soundness. For soundness, we show that any cheating prover P∗ breaking the soundness of the
above protocol, can be converted into a prover eP∗ that breaks the soundness of the underlying
protocol. eP∗ will have the witness w̄ for x /∈ L hardwired.

eP∗:

1. Obtain message v from eV.

38

2. Use w̄ as the witness to compute the NIWI proof wi.

3. Emulate P∗ with (v,wi) and obtain p.

4. Send p to the verifier eV.

First note that since L ∈ NP∩ co-NP, the statement x /∈ L has a witness w̄ as required. The only
difference in the views of P∗ and its emulated version in eP∗ is in the NIWI proof. From the witness
indistinguishability of the NIWI, P∗’s success probability does not change by more than a negligible
amount.

3.3.2.2 DPZK for all of NP

As mentioned to in the introduction, for the case of NP, we require stronger primitives. Specifically,
we use the following primitives for our construction:

– A two round deterministic prover zero knowledge (DPZK) protocol (eP, eV) secure against
robustly-explainable verifiers. Let the verifier and prover messages be denoted by v and p,
respectively.

– A non-interactive commitment scheme Com with perfect binding and computational hiding.
Additionally, as mentioned earlier, we require that the plaintext underlying a commitment
can be extracted in quasi-polynomial time. Such commitments can be constructed from
subexponentially-secure injective one-way functions (which in turn can be constructed from
subexponential IO and one-way functions).

– A keyless collision-resistant hash function H secure against (b + O(1))-non-uniform quasi-
polynomial time adversaries.

– A non-interactive witness-indistinguishable proof (NIWI) (NIWI.Prov,NIWI.Ver) for the lan-
guage

LNIWI =
{
(v, x, c)

∣∣∣ ∃(r, rCom, x1, x2) s.t. v = eV(x; r) OR
(
c = Com((x1, x2); rCom) ∧ x1 ̸= x2 ∧ H(1λ, x1) = H(1λ, x2)

)}
,

namely, either the verifier’s message is explainable, or the commitment sent by the verifier
contains a collision in H. As before, we shall refer to the second half of the ‘OR’ statement as
the trapdoor statement.

The protocol is presented in Figure 3.3.

Completeness. Follows directly from the completeness of the underlying protocol and the NIWI.

Zero Knowledge. For zero knowledge, we follow the same strategy as in the previous subsection
and show how any b-non-uniform verifier V∗ for the above protocol can be converted into a robustly-
explainable (b+O(1))-non-uniform verifier against the original protocol.

We argue that Claim 1 also holds for this protocol with the exact same S and eV∗. The only
difference is in the proof of robust explainability of the verifier eV∗, which is based on complexity
leveraging.

39

Protocol: (P,V) for L ∈ NP

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Verifier V compute the first message as

(a) r ←$ {0, 1}p(n)

(b) c := Com(0; rCom)

(c) v := eV(x; r)

(d) xNIWI := (x, v, c,H)

(e) wNIWI := (r,⊥,⊥)
(f) wi← NIWI.Prov(xNIWI, wNIWI).

send (v,wi, c) to the prover P.

2. Prover P computes the second message as

(a) x̃NIWI := (x, v, c,H)

(b) if NIWI.Ver(x̃NIWI,wi) ̸= 1, output ⊥.

(c) p := eP(x,w, v).

send p to the verifier V.

3. Verifier V performs the check

(a) if eV(x, p; r) = 1, accept. Else, reject.

Figure 3.3: Deterministic prover zero-knowledge for L ∈ NP.

Robust Explainability of eV∗. Fix some PPT sampler R for coins for eV∗ and assume toward con-
tradiction that with noticeable probability it outputs a message v that is not explainable when
initialized with random coins sampled using R. We show that there exists a (b+O(1))-non-uniform
quasi-polynomial time attacker that finds a collision in H. Recall the eV∗ only outputs a non-⊥
message provided that the emulated V∗ produces a valid NIWI. By the unconditional soundness of
the NIWI, it follows that whenever eV∗ outputs a non-explainable message, it must be that c is a
valid commitment to a collision in H. This collision is then be extracted from the commitment in

40

quasi-polynomial time. Note that the corresponding collision finder can be described by eV∗ and R,
which have non-uniform description of size b+O(1).

Zero knowledge of (P,V) now follows from that of (eP, eV) and the existence of S and eV∗,
exactly as in the previous subsection.

Soundness. We show that any cheating prover P∗ breaking the soundness of the above protocol,
can be converted into a prover eP∗ that breaks the soundness of the underlying robustly-explainable
protocol. The reduction is similar to that in the previous subsection with some required changed.
eP∗ will have a collision (x1, x2) as (part of the) witness for the trapdoor statement hardwired in its
code.

eP∗:

1. Obtain message v from eV.

2. Compute c = Com(x1, x2; rCom).

3. Use (x1, x2, rCom) as the witness to compute the NIWI proof wi.

4. Emulate P∗ with (v,wi) and obtain p.

5. Send p to the verifier eV.

The difference in the views of P∗ and its emulated version in eP∗ is the commitment to (x1, x2)
rather than zero, and in the witness used for the NIWI proof. Using the hiding of the commitment
(against non-uniform PPT attackers) and the witness indistinguishability of the NIWI, P∗’s success
probability does not change by more than a negligible amount.

Remark 2. We emphasize that for soundness, we require that all the underlying primitives to are secure
against non-uniform adversaries since our soundness reduction is non-uniform.

3.4 Predictable Arguments and DPZK

In this section, we show that any deterministic-prover zero-knowledge (DPZK) argument against
bounded-non-uniform verifier can be made predictable. The notion of predictable arguments was
introduced in [FNV17], where it is in particular shown to imply witness encryption. In the next
section, we address additional properties of DPZK that follow from this connection.

We start by recalling the definition of predictable arguments (PA) [FNV17]. While they also
address predictable argument of knowledge, we restrict attention to predictable arguments that are
only sound.

Definition 22 (Predictable Argument). A ρ-round predictable argument is an argument specified by
a tuple of algorithms (Chal,Resp) as described below:

1. The verifier PA.V samples
(−→c ,−→b

)
← Chal(1λ, x), where−→c := (c1, · · · , cρ) and

−→
b := (b1, · · · , bρ).

2. For all i ∈ [ρ] in increasing sequence:

(a) PA.V sends ci to the PA.P;

41

(b) The prover PA.P computes ai := Resp(1λ, x, w, c1, · · · , ci) and sends ai to PA.V.

(c) PA.V checks if ai = bi, and returns 0 otherwise.

3. If all challenges are answered correctly, PA.V returns 1.

The protocol is required to satisfy:

Correctness. There exists a negligible function negl(·) such that for all x ∈ L such that RL(x,w) = 1,
we have

Pr[OutPA.V⟨PA.P(x,w),PA.V(x)⟩ = 1] ≥ 1− negl(λ) .

Soundness. For any non-uniform PPT prover P∗, there exists a negligible function negl(·) such that
for all x /∈ L,

Pr[⟨PA.P∗,PA.V(x)⟩ = 1] ≤ negl(λ) .

A deterministic-prover zero-knowledge predictable argument (PA-DPZK) is a deterministic-
prover zero-knowledge argument that is also a predictable argument.

We prove the following:

Theorem 11. Let (P,V) be a deterministic-prover zero-knowledge argument for L against bounded-
non-uniform verifiers. There exists a verifier V′ such that (P,V′) is a predictable argument.

Note that since we do not change the honest prover P it follows that (P,V′) is also deterministic-
prover zero knowledge against the same class of verifiers.

Relying on the following result by Faonio, Nielsen, and Venturi,

Theorem 12 ([FNV17]). If there exists a Predictable Argument (PA) for a language L, then there
exists a witness encryption scheme for L.

our theorem holds for all λΩ(1)-non-uniform verifiers, and we deduce

Corollary 3. If there exists a deterministic-prover zero-knowledge argument for L against λΩ(1)-non-
uniform verifiers, then there exists a witness encryption scheme for L.

We now proceed with the proof.

Proof of Theorem 11. Let (P,V) be a ρ-round DPZK argument for L against b-non-uniform verifiers,
for b(λ) ≥ 2λ + ω(1). Let PRG : {0, 1}λ → {0, 1}ℓ be a pseudorandom generator, where ℓ(λ) is the
amount of coins used by V. For a given seed s ∈ {0, 1}λ, we define the deterministic verifier Vs(x)
that derives coins r = PRG(s) for V then emulates V(x; r).

The transformed verifier V′ is presented in Figure 3.4.
First, note that the protocol satisfies the structural requirement of a predictable argument. We now
move to prove completeness and soundness with respect to the new verifier V′.

Completeness. We show that (P,V′) is complete based on (a) the completeness of (P,V′); (b) zero
knowledge of (P,V′); and (c) pseudorandomness of PRG.

Fix any statement x ∈ L and corresponding prover witness w. We need to show that in an inter-
action ⟨P(x,w),V′(x)⟩, V′ rejects with negligible probability. First, by the completeness of (P,V) and
the pseudorandomness of PRG, an interaction ⟨P(x,w),Vs(x))⟩ is accepting except with negligible

42

The New Verifier V′

Input: x, security parameter 1λ

1. Sample s←$ {0, 1}λ and construct Vs.

2. Sample {p̃i}ρi=1 ← Sim(Vs, 1
t, x), where t is the running time of Vs.

3. Emulate an execution of Vs(x) with prover messages {p̃i}ρi=1; let {ṽi}ρi=1 be the
resulting verifier messages.

4. If the verifier Vs rejects in the above execution, reject.

5. Proceed interacting with the prover P: at each round i ∈ [ρ]:

– send vi(= ṽi) to P,

– if the prover answers with pi = p̃i, proceed to the next round,

– else, reject.

6. Accept.

Figure 3.4: The Verifier in the Predictable Protocol

probability over the choice of s. Noting that Vs(x) is b-non-uniform, we can invoke zero knowl-
edge, to deduce that the simulated prover messages {p̃i}ρi=1 make Vs accept with overwhelming
probability over the choice of s.

We next argue that the deterministic prover P(x,w) produces messages {pi = p̃i}ρi=1 with over-
whelming probability (over the coins of Sim that sampled them). This again follows from zero
knowledge. Indeed, we can consider a zero-knowledge distinguisher that has (x,w, s) hardwired,
and given messages pi emulates a conversation of the deterministic P(x,w) with Vs(x), and out-
puts “real” if the corresponding prover messages coincide with pi, or “simulated” otherwise. If the
simulated messages p̃i are inconsistent with the real prover messages pi, the distinguisher will tell
them apart.

Soundness. We show that (P,V′) is sound based on (a) the pseudorandomness of PRG; and (b)
the soundness of (P,V).

First, note that by pseudorandomness the protocol (P,Vs) where s is chosen at random is also
sound, since otherwise a cheating prover can be directly used to distinguish real verifier coins form
pseudorandom ones. Next, note that any cheating prover against V′ directly implies a cheating
prover against Vs (for a random s) by construction. Indeed, V′ emulates Vs and accepts only when
the prover is consistent with a simulated strategy p̃i that convinces Vs.1 Soundness follows.

1Here we implicitly rely on the fact that the simulator produces an accepting transcript for the deterministic verifier Vs.

43

3.5 Round Reduction and Laconicity

Faonio, Nielsen, and Venturi [FNV17] proved that the round complexity of any predictable argu-
ment can be collapsed to one (two messages overall) and that any predictable argument can be
made laconic — namely, the prover message is a single bit (or more generally ℓ bits to achieve
soundness ≈ 2−ℓ). In this section, we review their transformations and show that they preserve
zero knowledge against bounded-non-uniform verifiers. As a corollary of this and the previous
section, we deduce that any deterministic-prover zero knowledge argument against bounded-non-
uniform verifiers can be collapsed to one round and made laconic.

3.5.1 Round Reduction

We start by recalling the round-collapsing transformation from [FNV17]. In what follows, let
(P′,V′) be a ρ-round predictable argument, the following transformation provides a one round
predictable argument (P,V) with a large soundness error (to be dealt with later on). Roughly, the
verifier randomly chooses a “cut-off” point i∗ for the underlying protocol, and sends all the verifier
messages up to, and including, the i∗-th round verifier message to the prover. Being a predictable
argument, the verifier is able to do so without requiring the corresponding intermediate prover
messages. The prover then iteratively computes the response for each round of the underlying pro-
tocol and send over all the prover messages with the verifier accepting if and only if each prover
messages corresponds to the predicted prover message.

In [FNV17], it is proven that this protocol has soundness error at most 1 − ρ−1 + negl(λ). The
protocol is then repeated ω(ρ log λ) times to achieve negligible soundness, using a parallel repetition
theorem for one round arguments [BIN97].

Proposition 3. The round collapsing transformation preserves zero knowledge against b-non-uniform
verifiers.

Proof. We prove the proposition in two steps. First, we show that the transformation in Figure 3.5
preserves zero-knowledge. Then we show that two-message zero-knowledge against bounded-non-
uniform adversaries is closed under parallel repetition.

To prove the first part, let V∗ be a b-non-uniform verifier. We show the following claim.

Claim 2. There exist an efficient simulator S and a verifier V′∗ against ⟨P′,V′⟩ such that

1. V′∗ is (b+O(1))-non-uniform and efficiently constructable from V∗.

2. For every x ∈ L,
ViewV∗⟨P(x,w),V∗⟩ ≡ S(ViewV′∗⟨P′(x,w),V′∗⟩) .

This claim gives rise to a simulator Sim for (P,V), which simply invokes Sim′ of (P,V) on V′∗

and then invokes S.

The deterministic nature of the verifier ensures that the simulator cannot manipulate the verifier’s randomness and therefore
must produce an accepting transcript is consistent with V(·;PRG(s)).

44

Protocol: One Round (P,V)

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Verifier V

(a) Samples i∗ ←$ [ρ],

(b) Samples (vi, bi)i∈[ρ] ←$ V(x).

(c) Sends v1, · · · , vi∗ to the prover P.

2. Prover P

(a) For each i ∈ [i∗], compute pi := P(x,w, {vj}j∈[i]).

(b) Send p1, · · · , pi∗ to the verifier V.

3. Verifier V accepts if and only if for all j ∈ [i∗], pj = bj .

Figure 3.5: Round collapsing transformation.

Proof of Claim. We construct S,V′∗.

V′∗:

1. Emulates V∗ and obtains (v1, . . . , vi∗).

2. At each round i ∈ [i∗], forward vi to P′.

3. Abort after round i∗.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the randomness of V′∗),

2. as well as the received prover messages p1, . . . , pi∗ .

The second property asserted in the claim follows by construction of S,V′∗ and the construction
of P from P′ in Figure 3.5. It is left to see that V′∗ is (b + O(1))-non-uniform and efficiently
constructable from V∗. (b + O(1))-non-uniformity and efficient construction follow from the fact
that V∗ is b-non-uniform and V′∗ uses it as a black box and described by the three code lines
above.

45

We now prove that closure under parallel repetition.

Claim 3. For any two-message zero knowledge system (P,V) against b-non-uniform verifiers and a any
polynomial ℓ, the ℓ-fold parallel repetition (P⊗ℓ,V⊗ℓ) is zero knowledge against (b − O(log λ))-non-
uniform verifiers.

Proof. In what follows, let Sim be the simulator for the original argument (P,V), and let V∗
⊗ℓ be

any (b− λ− O(log λ))-non-uniform verifier of polynomial running time t(λ). We now describe the
simulator Sim⊗ℓ for (P⊗ℓ,V⊗ℓ). The simulator will use a pseudorandom generator PRG : {0, 1}λ →
{0, 1}k, where k is the amount of coins used by V∗

⊗ℓ.

Sim⊗ℓ(V
∗
⊗ℓ, 1

t, x):

1. Sample a s←$ {0, 1}λ.

2. For each i ∈ [ℓ]:

(a) Construct the deterministic verifier V∗
s,i that first derives coins PRG(s), uses them to

emulate V∗
⊗ℓ, obtains v1, . . . , vℓ, and outputs vi. Let t′ = t + poly(λ) be a bound on its

running time.

(b) Sample p̃i ←$ Sim(V∗
s,i, 1

t′ , x).

3. Output p̃1, . . . , p̃ℓ,PRG(s).

We now prove the validity of Sim⊗ℓ. First, consider an execution between the prover P(x,w) and
verifier V∗

s = (V∗
s,1, . . . ,V

∗
s,ℓ), and let p1, . . . , pℓ denote the prover messages in such an execution.

Then by pseudorandomness of PRG,

ViewV∗
⊗ℓ
⟨P(x,w),V∗

⊗ℓ⟩ ≈c p1, . . . , pℓ,PRG(s) .

Noting that V∗
s,i is a program of length at most b and running time at most t′(λ), we can invoke

the simulation guarantee (P,V). Specifically, we can deduce that

p1, . . . , pℓ,PRG(s) ≈c p̃1, . . . , p̃ℓ,PRG(s) .

This can be shown by a standard hybrid argument and follows from the fact that pi ≈c p̃i =
Sim(V∗

s,i, 1
t′ , x) and that the distinguisher can have (x,w, s) hardwired in order to simulate any

other pj or p̃i. Overall
ViewV∗

⊗ℓ
⟨P(x,w),V∗

⊗ℓ⟩ ≈c Sim⊗ℓ(V
∗
⊗ℓ, 1

t, x) .

This complete the proof of Proposition 3.

3.5.2 Laconic Prover Messages

As in the previous section, we start by recalling the laconic prover transformation from [FNV17].
In what follows, let (P′,V′) be a one round predictable argument, the following transformation
provides a laconic prover predictable argument (P,V) with a soundness error negligibly close to
1/2, where the prover sends only a single bit. Roughly, the verifier samples a sufficiently large

46

random string γ and sends it to the prover along with the verifier message. The prover responds
with a single bit corresponding to the inner product of γ and its own response to the verifier
message, with the verifier accepting if only if the bit matches its own computed inner product of γ
with the predicted prover message.

Protocol: Laconic Prover (P,V)

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Verifier V

(a) Sample (v, b)←$ V′(x).

(b) Sample γ ←$ {0, 1}|b|.
(c) Send v, γ to the prover P.

2. Prover P

(a) Compute p := P′(x,w, v).

(b) Send q := ⟨p, γ⟩ to the verifier V.

3. Verifier V accepts if and only if q = ⟨b, γ⟩.

Figure 3.6: Laconic prover transformation.

In [FNV17], it is proven that this protocol has soundness error at most 1
2 + negl(λ). As we

have seen in the previous subsection (Claim 3), the soundness can be amplified in a manner that
preserves zero knowledge. Specifically, ℓ repetitions yields a protocol with soundness error at most
2−ℓ + negl(λ)2. Therefore, we focus on proving that a single instance of the above transformation
preserves zero knowledge.

Proposition 4. The round collapsing transformation preserves zero knowledge against b-non-uniform
verifiers.

Proof. Let V∗ be a b-non-uniform verifier. We show the following claim.

Claim 4. There exist an efficient simulator S and a verifier V′∗ against ⟨P′,V′⟩ such that

2It should be noted that due to technical reasons as explained in [BIN97, FNV17], the error rate goes down exponentially
up to any inverse polynomial, which suffices to achieve negligible soundness by setting ℓ = ω(log λ). We encourage the
reader to see the aforementioned works for details.

47

1. V′∗ is (b+O(1))-non-uniform and efficiently constructable from V∗.

2. For every x ∈ L,
ViewV∗⟨P(x,w),V∗⟩ ≡ S(ViewV′∗⟨P′(x,w),V′∗⟩) .

This claim gives rise to a simulator Sim for (P,V), which simply invokes Sim′ of (P′,V′) on V′∗

and then invokes S.

Proof of Claim. We construct S,V′∗.

V′∗:

1. Emulate V∗ and obtains (v, γ).

2. Forward v to P′.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the randomness of V′∗),

2. as well as ⟨p, γ⟩, where p is the received prover message and γ is derived from the randomness
of V∗.

The proof is similar to that of Claim 2 in the previous subsection. The second property asserted
in the claim follows by construction of S,V′∗ and the construction of P from P′. It is left to see that
V′∗ is (b+O(1))-non-uniform and efficiently constructable from V∗. (b+O(1))-non-uniformity and
efficient construction follow from the fact that V∗ is b-non-uniform and V′∗ uses it as a black box
and described by the two code lines above.

This completes the proof of Proposition 4.

3.6 Predictable Arguments from Honest-Verifier ZK

In Section 3.4, we showed how to transform any deterministic-prover zero-knowledge (DPZK) pro-
tocol into one that is also a predictable argument (PA). In this section, we show that if we start with
a weaker notion of deterministic-prover honest verifier zero-knowledge (DP-HVZK) 3 and the exis-
tence of an appropriate hard language, we can transform the DP-HVZK protocol into a predictable
argument. One caveat of this transformation is that the languages of the DP-HVZK and PA in our
transformation will be related, but not identical. As long as the DP-HVZK we start from is for an
expressive enough class of languages (e.g. for NP ∩ co-NP), we will get a PA for the same class.

Definition 23 (Hard-on-Average Language). A language L is hard-on-average if there exist two
PPT samplers YL, NL where the support of the first is L and of the second is {0, 1}∗ \ L such that

{
x : x← YL(1

λ)
}
λ∈N ≈c

{
x : x← NL(1

λ)
}
λ∈N .

We establish the following theorem.

3Only zero-knowledge against honestly behaving verifiers.

48

Theorem 13. If there exists a deterministic-prover honest-verifier zero-knowledge argument (DP-
HVZK) for L ∨ Lhard, where Lhard is a hard-on-average language, then there exists a predictable ar-
gument (PA) for L.

By the fact that both NP and NP ∩ co-NP are closed under OR, we deduce the following corol-
laries.

Corollary 4. Assuming DP-HVZK for all of NP and hard-on-average languages in NP, there is a witness
encryption scheme for all of NP.

Corollary 5. Assuming DP-HVZK for all of NP∩co-NP and hard-on-average languages in NP∩co-NP,
there is a witness encryption scheme for all of NP ∩ co-NP.

We note that hard-on-average languages in NP are known to follow from one-way functions,
and hard-on-average languages in NP ∩ co-NP are known to follow from one-way permutations.

We now proceed with the proof.

Proof of Theorem 13. To build a predictable argument for L, we use the following primitives:

– A hard language Lhard given by samplers (YLhard
, NLhard

).

– A ρ-round DP-HVZK protocol ⟨P′,V′⟩ for the language LOR defined below, where the verifier
V′ sends messages vi in round i, and the prover P′ sends message pi in round i. We denote by
Sim′ the corresponding honest-verifier simulator. The language LOR is defined below,

LOR =
{
(x, x̃)

∣∣∣ ∃(w, w̃) s.t. RL(x,w) = 1 OR RLhard
(x̃, w̃) = 1

}
,

namely, either the statement x is in L, or x̃ is in Lhard.

The transformation is presented in Figure 3.7.
Before we proceed with the completeness and soundness, we note that the protocol structure fol-
lows that of a predictable argument.

Completeness. We show that (P,V) is complete based on the honest verifier zero-knowledge
property of (P′,V′).

Fix any x ∈ L and the corresponding witness w, a yes-instance x̃ ∈ Lhard, and let x′ = (x, x̃).
Let p̃1, . . . , p̃ρ denote the messages and r̃ denote the verifier randomness simulated by Sim′(x′).
We argue that the deterministic prover P(x,w) produces messages {pi = p̃i}ρi=1 with overwhelming
probability (over the coins of Sim′). This follows from zero knowledge. Consider a distinguisher
that has (x,w) hardwired, and given messages pi and verifier randomness r̃ emulates a conversation
of the deterministic P′(x,w) with V′(x; r̃), and outputs “real” if the corresponding prover messages
coincide with pi, or “simulated” otherwise. If the simulated messages p̃i are inconsistent with the
real prover messages pi, the distinguisher will tell them apart.

Soundness. We show that (P,V) is sound based on the completeness, soundness and zero knowl-
edge of (P′,V′), as well as the hardness of Lhard.

Fix any x /∈ L and cheating prover P∗. We prove that P∗ fails to convince V(x) of accepting,
except with negligible probability. We consider several hybrid experiments transitioning from a real
interaction to an ideal interaction. We will show that when moving from one hybrid to the next

49

Protocol: PA (P,V)

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

Verifier V computes

1. x̃← YLhard
(1λ)

2. x′ := (x, x̃).

3.
(
{(vi, p̃i)}ρi=1 , r̃

)
← Sim′(x′).

sends x̃ to the prover P in the first message.

In each round i ∈ [ρ],

1. Verifier V sends vi to the prover P.

2. Prover P computes

(a) x′ := (x, x̃)

(b) w′ := (w,⊥)
(c) pi := P′(x′, w′, {vj}ij=1)

sends pi to the verifier V.

3. If for any i ∈ [ρ], pi ̸= p̃i, V rejects.

If verifier V has not rejected in all rounds, accept.

Figure 3.7: Transforming DP-HVZK to PA

the prover’s chance of convincing the verifier does not decrease by more than a negligible amount.
Then we will show that the chance that V(x) is convinced the final (ideal interaction) hybrid is
negligible.

Hyb0: This is a real interaction between P∗ and V(x).

Hyb1: In this hybrid, once V samples a simulated transcript p̃1, . . . , p̃ρ, r̃ ←$ Sim(x′), it emulates an
execution of V′(x′; r̃) with the simulated prover messages and checks whether it is accepting.
If it is not, V rejects immediately.

We argue that the probability that P∗ convinces V(x) to accept in this hybrid is negligibly
close to that in Hyb0. For this purpose, we argue that with overwhelming probability Sim(x′)

50

samples an accepting transcript. This is shown based on completeness and zero knowledge
of (P′,V′). Specifically, recall that V(x) samples x̃ ∈ Lhard and thus x′ = (x, x̃) ∈ LOR. By the
completeness of (P′,V′), in an interaction between V′(x′) and P′(x′, w′) where w′ = (⊥, w̃)
and w̃ is a witness for x̃, the prover convince V′ with overwhelming probability. It then
follows from zero knowledge of (P′,V′) that Sim(x′) also generates an accepting transcript
with overwhelming probability; otherwise, we can non-uniformly fix x̃, w̃ and construct a
distinguisher that violates zero knowledge.

Hyb2: In this hybrid, the verifier V does not insist that the prover P∗ is consistent with the simulated
messages p̃1, . . . , p̃ρ. Instead, it emulates V′(x′; r̃), and accepts if the messages sent by P∗

convince V′.

The probability that V accepts in this hybrid is at least as large as the probability it accepts in
Hyb1. Indeed, any execution that would have been accepted in the previous hybrid Hyb1 is in
particular an execution in which V′(x′; r̃) is convinced and thus is also accepted in the current
Hyb2.

Hyb3: In this hybrid, the verifier V does not check that the simulated p̃1, . . . , p̃ρ, r̃ make V′(x′; r̃)
accept. (In particular, the simulated prover messages p̃1, . . . , p̃ρ are ignored altogether, and
only the simulated coins r̃ are used).

The probability that V(x) accepts in this hybrid is at least as large as the probability it accepts
in the previous hybrid, as we have only removed a verifier test.

Hyb4: In this hybrid, instead of sampling simulated coins r̃ using Sim′(x′), V samples truly random
coins r.

The probability that V(x) accepts in this hybrids is negligibly close to that in the previous
hybrid. This follows from zero knowledge of (P′,V′). Indeed, since x′ ∈ LOR, the simulated
honest verifier coins r̃ are pseudorandom.

Hyb5: In this hybrid, V(x) samples a no-instance x̃ ← NLhard
instead of a yes-instance. By the

indistinguishability of YLhard
and NLhard

, the probability that P∗ convinces V(x) to accept in this
hybrid is negligibly close to that in Hyb4.

We now argue that the probability that P∗ convinces V(x) to accept in Hyb5 is negligible. Note
that in Hyb5 it holds that both x /∈ L and x̃ /∈ Lhard and thus x′ = (x, x̃) /∈ LOR. For P∗ to convince
V(x) of accepting in Hyb5, it must convince V′(x′; r) of accepting, when V′ uses truly random coins.
By the soundness of (P′,V′) this occurs with negligible probability. Soundness follows.

3.7 Open Problems

As noted earlier, Goldreich-Oren [GO94] establishes lower bound for both arguments and proofs.
Further, the lower bounds also extend to the notions of statistical and perfect zero-knowledge.
While our work provides a complete characterization for deterministic computational zero-knowledge
arguments, a full characterization of deterministic zero-knowledge remains an interesting open
problem.

51

Chapter 4

Round Optimal Multiparty
Computation

4.1 Overview

Before we dive into the technical contributions of our work, for the uninitiated reader, we provide
a brief summary of the key challenges that arise in the design of a four round MPC protocol and the
high-level strategies adopted in prior works for addressing them. We group these challenges into
three broad categories, and will follow the same structure in the remainder of the section.

Enforcing honest behavior. A natural idea, adopted in prior works, is to start with a protocol that
achieves security against semi-malicious1 adversaries and compile it using zero-knowledge (ZK)
proofs [GMR89a] à la GMW compiler [GMW87b] to achieve security against malicious adversaries.
This is not easy, however, since we are constrained by the number of rounds. As observed in prior
works, when the underlying protocol is delayed semi-malicious2 [ACJ17, BL18], we can forego
establishing honest behavior in the first two rounds. In particular, it suffices to establish honest
behavior in the third and fourth rounds. The main challenge that still persists, however, is that
ZK proofs – the standard tool for enforcing honest behavior – are impossible in three rounds w.r.t.
black-box simulation [GK96b]. Thus, an alternative mechanism is required for establishing honest
behavior in the third round.

Need for rewind security. Due to the constraint on the number of rounds, all prior works utilize
design templates where multiple sub-protocols are executed in parallel. This creates a challenge
when devising a black-box simulation strategy that works by rewinding the adversary. In particular,
if the simulator rewinds the adversary (say) during second and third round of the protocol, e.g.,
to extract its input, we can no longer rely on stand-alone security of sub-protocols used in those

1Roughly speaking, such adversaries behave like semi-honest adversaries, except that they may choose arbitrary random
tapes.

2Roughly speaking, a delayed semi-malicious adversary is similar to semi-malicious adversary, except that in the second
last round of a k-round protocol, it is required to output (on a special tape) a witness (namely, its input and randomness)
that establishes its honest behavior in all the rounds so far.

52

rounds. This motivates the use of sub-protocols that retain their security even in the presence of
some number of rewinds. Indeed, much work is done in all prior works to address this challenge.

Non-malleability. For similar reasons as above, we can no longer rely on standard soundness
guarantee of ZK proofs (which only hold in the stand-alone setting). All prior works address this
challenge via a careful use of some non-malleable primitive such as non-malleable commitments
[DDN91] in order to “bootstrap non-malleability” in the entire protocol. This leads to an involved
security analysis.

Our primary technical contribution is in addressing the first two issues. We largely follow the
template of prior works in addressing non-malleability challenges. As such, in the remainder of
this technical overview, we focus on the first two issues, and defer discussion on non-malleability
to Section 4.2.5.

Organization. We describe our key ideas for tackling the first and second issues in Sections 4.1.1
and 4.1.2, respectively. We conclude by providing a summary of our protocol in Section 4.1.3.

4.1.1 Enforcing Honest Behavior

In any four round protocol, a rushing adversary may always choose to abort after receiving the
messages of honest parties in the last round. At this point, the adversary has already received
enough information to obtain the output of the function being computed. This suggests that we
must enforce “honest behavior” on the protocol participants within the first three rounds in order
to achieve security against malicious adversaries. Indeed, without any such safeguard, a malicious
adversary may be able learn the inputs of the honest parties, e.g., by acting maliciously so as to
change the functionality being computed to the identity function.

Since three-round ZK proofs with black-box simulation are known to be impossible, all recent
works on four round MPC devise non-trivial strategies that only utilize weaker notions of ZK (that
are achievable in three or less rounds) to enforce honest behavior within the first three rounds of
the MPC protocol. However, all of these approaches end up relying on assumptions that are far
from optimal: [ACJ17] and [BHP17] use super-polynomial-time hardness assumptions, [HHPV18]
use Zaps [DN00] and affine-homomorphic encryption schemes, and [BGJ+18] use a new notion of
promise ZK together with three round strong WI [JKKR17], both of which require specific number-
theoretic assumptions.

A Deferred Verification Approach. We use a different approach to address the above challenge.
We do not require the parties to give an explicit proof of honest behavior within the first three
rounds. Of course, this immediately opens up the possibility for an adversary to cheat in the
first three rounds in such a manner that by observing the messages of the honest parties in the
fourth round, it can completely break privacy. To prevent such an attack, we require the parties
to “encrypt” their last round message in such a manner that it can only be decrypted by using a
“witness” that establishes honest behavior in the first three rounds. In other words, the verification
check for honest behavior is deferred to the fourth round.

In the literature, the above idea is referred to as conditional disclosure of secrets (CDS) [AIR01].
Typically, however, CDS is defined and constructed as a two-party protocol involving a single encryp-
tor – who encrypts a secret message w.r.t. some statement – and a single decryptor who presumably
holds a witness that allows for decryption. 3

3There are some exceptions; we refer the reader to Section 1.2.2 for discussion on other models.

53

This does not suffice in the multiparty setting due to the following challenges:

– The multiparty setting involves multiple decryptors as opposed to a single decryptor. A naive
way to address this would be to simply run multiple executions of two-party CDS in parallel,
each involving a different decryptor, such that the ith execution allows party i to decrypt by
using a witness that establishes its own honest behavior earlier in the protocol. However,
consider the case where the adversary corrupts at least two parties. In the above implementa-
tion, a corrupted party who behaved honestly during the first three rounds would be able to
decrypt the honest party message in the last round even if another corrupted party behaved
maliciously. This would clearly violate security. As such, we need a mechanism to jointly
certify honest behavior of all the parties (as opposed to a single party).

– In the two-party setting, the input and randomness of the decryptor constitutes a natural
witness for attesting its honest behavior. In the multiparty setting, however, it is not clear
how an individual decryptor can obtain such a witness that establishes honest behavior of all
the parties without trivially violating privacy of other parties.

We address these challenges by implementing a multiparty conditional disclosure of secrets (MCDS)
mechanism. Informally speaking, an MCDS scheme can be viewed as a tuple of (possibly interac-
tive) algorithms (Gen,Enc,Dec): (a) Gen takes as input an instance and witness pair (x,w) and
outputs a “public” witness π. (b) Enc takes as input n statements (x1, . . . , xn) and a message m and
outputs an encryption c of m. (c) Dec takes as input a ciphertext c and tuples (x1, π1), . . . , (xn, πn)
and outputs m or ⊥. We require the following properties:

– Correctness: If all the instances (x1, . . . , xn) are true, then dec outputs m.

– Message Privacy: If at least one instance is false, then c is semantically secure.

– Witness Privacy: There exists a simulator algorithm that can simulate the output π of Gen
without using the private witness w.

The security properties of MCDS allow us to overcome the aforementioned challenges. In partic-
ular, the witness privacy guarantee allows the parties to publicly release the witnesses (π1, . . . , πn)
while maintaining privacy of their inputs and randomness.

In order to construct MCDS with witness privacy guarantee, we look towards ZK proof systems.
As a first attempt, we could implement public witnesses via a delayed-input4 four round ZK proof
system. Specifically, each party i is required to give a ZK proof for xi such that the last round of the
proof constitutes a public witness πi. Further, a simple, non-interactive method to implement the
encryption and the decryption mechanism is witness encryption [GGSW13]. However, presently
witness encryption is only known from non-standard assumptions (let alone OT).

To achieve our result from minimal assumptions, we instead use garbled circuits [Yao86] and
four round OT to implement MCDS. Namely, each party i garbles a circuit that contains hardwired
the entire transcript of the first three rounds of the underlying MPC, as well the fourth round
message of the MPC of party i. Upon receiving as input a witness π1, . . . , πn, where πj is a witness
for honest behavior of party j, the garbled circuit outputs the fourth round message. Each party j
can encode its witness πj in the OT receiver messages, where the corresponding sender inputs will
be the wire labels of the garbled circuit. Party j then release its private randomness used inside OT

4A proof system is said to be delayed input if the instance is only required for computing the last round of the proof.

54

in the fourth round so that any other party j′ can use it to compute the output of the OT, thereby
learning the necessary wire labels for evaluating the garbled circuit sent by party i. For security, it
is imperative the witness πj remains hidden until the randomness is revealed in the fourth round.

A problem with the above strategy is that in a four round OT, the receiver’s input must be fixed
by the third round. This means that we can no longer use four round ZK proofs, and instead must
use three round proofs to create public witnesses of honest behavior. But which three round proofs
must we use? Towards this, we look to the weaker notion of promise ZK introduced by [BGJ+18].
Roughly, promise ZK relaxes the standard notion of ZK by guaranteeing security only against mali-
cious verifiers who do not abort. Importantly, unlike standard ZK, distributional5 promise ZK can be
achieved in only three rounds with black-box simulation in the bidirectional message model. This
raises two questions – is promise ZK sufficient for our purposes, and what assumptions are required
for three round promise ZK?

Promise ZK Under the Hood. Let us start with the first question. An immediate challenge with
using promise ZK is that it provides no security in the case where the verifier always aborts. In
application to four round MPC, this corresponds to the case where the (rushing) adversary always
aborts in the third round. Since the partial transcript at the end of third round (necessarily) con-
tains inputs of honest parties, we still need to argue security in this case. The work of [BGJ+18]
addressed this problem by using a “hybrid” ZK protocol that achieves the promise ZK property
when the adversary is non-aborting, and strong witness-indistinguishability (WI) property against
aborting adversaries. The idea is that by relying on strong WI property (only in the case where ad-
versary aborts in the third round), we can switch from using real inputs of honest parties to input
0. However, three round strong WI is only known based on specific number-theoretic assumptions
[JKKR17].

To minimize our use of assumptions, we do not use strong WI, and instead devise a hybrid
argument strategy – similar to that achieved via strong WI – by using promise ZK under the hood.
Recall that since we use the third round prover message of promise ZK as a witness for conditional
decryption, it is not given in the clear, but is instead “encrypted” inside the OT receiver messages
in the third round. This has the positive effect of shielding promise ZK from the case where the
adversary always aborts in the third round.6 In particular, we can use the following strategy for
arguing security against aborting adversaries: we first switch from using promise ZK third round
prover message to simply using 0’s as the OT receiver’s inputs. Now, we can replace the honest
parties’ inputs with 0 inputs by relying on the security of the sub-protocols used within the first
three rounds. Next, we can switch back to using honestly computed promise ZK third round prover
message as the OT receiver’s inputs.

Let us now consider the second question, namely, the assumptions required for three round
promise ZK. The work of [BGJ+18] used specific number-theoretic assumptions to construct three
round (distributional) promise ZK. However, we only wish to rely on the use of four round OT.
Towards this, we note that the main ingredient in the construction of promise ZK by [BGJ+18]
that necessitated the use of number-theoretic assumptions is a three round WI proof system that
achieves “bounded-rewind-security.” Roughly, this means that the WI property holds even against
verifiers who can rewind the prover an a priori bounded number of times.

Towards minimizing assumptions, we note that a very recent work of [GR19] provides a con-
struction of such a WI based only on non-interactive commitments. By using their result, we can

5That is, where the instances are sampled from a public distribution.
6Note that if the protocol does progress to the fourth round, then we do not need to shield promise ZK anymore.

55

obtain three round promise ZK based on non-interactive commitments, which in turn can be ob-
tained from four round OT using the recent observation of Lombardi and Schaeffer [LS19].

4.1.2 Rewinding Related Challenges

While the above ideas form the basis of our approach, we run into several obstacles during im-
plementation due to rewinding-related issues that we mentioned earlier. In order to explain these
challenges and our solution ideas, we first describe a high-level template of our four round MPC
protocol based on the ideas discussed so far. To narrow the focus of the discussion on the challenges
unique to the present work, we ignore some details for now and discuss them later.

An Initial Protocol Template. We devise a compiler from four round delayed semi-malicious MPC
protocols of a special form to a four round malicious-secure MPC protocol. Specifically, we use
a four round delayed semi-malicious protocol Π obtained by plugging in a four-round malicious-
secure (which implies delayed semi-malicious security) OT in the k-round semi-malicious MPC
protocol of [GS18b, BL18] based on k-round semi-malicious OT. An important property of this
protocol that we rely upon is that it consists only of OT messages in the first k − 2 rounds. Further,
we also rely upon the random self-reducibility of OT, which implies that the first two rounds do not
depend on the OT receiver’s input, and the first three rounds do not depend on the sender’s input.7

To achieve malicious security, similar to prior works, our compiler uses several building blocks
(see Section 4.1.3 for a detailed discussion). One prominent building block is a three-round ex-
tractable commitment scheme that is executed in parallel with the first three rounds of the delayed
semi-malicious MPC. The extractable commitment scheme is used by the parties to commit to their
inputs and randomness. This allows the simulator for our protocol to extract the adversary’s in-
puts and randomness by rewinding the second and third rounds, and then use them to simulate the
delayed semi-malicious MPC.

Bounded-Rewind-Secure OT. The above template poses an immediate challenge in proving se-
curity of the protocol. Since the simulator rewinds the second and third rounds in order to ex-
tract the adversary’s inputs, this means that the second and third round messages of the delayed
semi-malicious MPC also get rewound. For this reason, we cannot simply rely upon delayed semi-
malicious security of the MPC. Instead, we need the MPC protocol to remain secure even when it is
being rewound. More specifically, since we are using an MPC protocol where the first two rounds
only consist of OT messages, we need a four round rewind-secure OT protocol. Since the third round
of a four round OT only contains a message from the OT receiver, we need the following form of
rewind security property: an adversarial sender cannot determine the input bit used by the receiver
even if it can rewind the receiver during the second and third round.

Clearly, an OT protocol with black-box simulation cannot be secure against an arbitrary number
of rewinds. In particular, the best we can hope for is security against an a priori bounded number
of rewinds. Following observations from [BGJ+18], we note that bounded-rewind security of OT
is, in fact, sufficient for our purposes. Roughly, the main idea is that the rewind-security of OT is
invoked to argue indistinguishability of two consecutive hybrids inside our security proof. In order
to establish indistinguishability by contradiction, it suffices to build an adversary that breaks OT
security with some non-negligible probability (as opposed to overwhelming probability). This, in
turn means that the reduction only needs to extract the adversary’s input required for generating

7We note that this property was also used by [BL18] in their construction of k-round malicious-secure MPC.

56

its view with non-negligible probability. By using a specific extractable commitment scheme, we
can ensure that the number of rewinds necessary for this task are a priori bounded.

Standard OT protocols, however, do not guarantee any form of bounded-rewind security. To-
wards this, we provide a generic construction of a four round bounded-rewind secure OT starting
from any four round OT, which may be of independent interest. Our transformation is in fact more
general and works for any k ≥ 4 round OT, when rewinding is restricted to rounds k− 2 and k− 1.
For simplicity, we describe our ideas for the case where we need security against one rewind; our
transformation easily extends to handle more rewinds.

A natural idea to achieve one-rewind security for receivers, previously considered in [BL18], is
the following: run two copies of an OT protocol in parallel for the first k−2 rounds. In round k−1,
the receiver randomly chooses one of the two copies and only continues that OT execution, while
the sender continues both the OT executions. In the last round, the parties only complete the OT
execution that was selected by the receiver in round k−1. Now, suppose that an adversarial sender
rewinds the receiver in rounds k − 2 and k − 1. Then, if the receiver selects different OT copies on
the “main” execution thread and the “rewound” execution thread, we can easily reduce one-rewind
security of this protocol to stand-alone security of the underlying OT.

The above idea suffers from a subtle issue. Note that the above strategy for dealing with rewinds
is inherently biased, namely, the choice made by the receiver on the rewound thread is not random,
and is instead correlated with its choice on the main thread. If we use this protocol in the design
of our MPC protocol, it leads to the following issue during simulation: consider an adversary who
chooses a random z and then always aborts if the receiver selects the z-th OT copy. Clearly, this
adversary only aborts with probability 1/2 in an honest execution. Now, consider the high-level
simulation strategy for our MPC protocol discussed earlier, where the simulator rewinds the second
and third rounds to extract the adversary’s inputs. In order to ensure rewind security of the OT, this
simulator, with overall probability 1/2, will select the z-th OT copy on all the rewound execution
threads. However, in this case, the simulator will always fail in extracting the adversary’s inputs no
matter how many times it rewinds.

We address the above problem via a secret-sharing approach to eliminate the bias. Instead of
simply running two copies of OT, we run ℓ · n copies in parallel during the first k− 2 rounds. These
ℓ · n copies can be divided into n tuples, each consisting of ℓ copies. In round k − 1, the receiver
selects a single copy from each of the n tuples at random. It then uses n-out-of-n secret sharing to
divide its input bit b into n shares b1, . . . , bn, and then uses share bi in the OT copy selected from
the i-th tuple. In the last round, sender now additionally sends a garbled circuit (GC) that contains
its input (x0, x1) hardwired. The GC takes as input all the bits b1, . . . , bn, reconstructs b and then
outputs xb. The sender uses the labels of the GC as its inputs in the OT executions. Intuitively, by
setting ℓ appropriately, we can ensure that for at least one tuple i, the OT copies randomly selected
by the receiver on the main thread and the rewound threads are different, which ensures that bi
(and thereby, b) remains hidden. We refer the reader to the technical section for more details.

Proofs Of Proofs. We now describe another challenge in implementing our template of four
round MPC. As discussed earlier, we use a three round extractable commitment scheme to enable
extraction of the adversary’s inputs and randomness. For reasons similar to those as for the case
of OT, we actually use an extractable commitment scheme that achieves bounded-rewind security.
Specifically, we use a simplified variant of the three-round commitment scheme constructed by
[BGJ+18].8

8The commitment scheme of [BGJ+18] also achieves some security properties, in addition to bounded rewind security,

57

A specific property of this commitment scheme is that in order to achieve rewind security, it
is designed such that the third round message of the committer is not “verifiable.” This means
that the committer may be able to send a malformed message without being detected by the re-
ceiver. For this reason, we require each party to prove the “well-formedness” of its commitment via
promise ZK. This, however, poses the following challenge during simulation: since the third round
prover message of promise ZK is encrypted inside OT receiver message, the simulator doesn’t know
whether the adversary’s commitment is well-formed or not. In particular, if the adversary’s com-
mitment is not well-formed, the simulator may end up running forever, in its attempt to extract the
adversary’s input via rewinding.

One natural idea to deal with this issue is to first extract adversary’s promise ZK message from
the OT executions via rewinding, and then decide whether or not to attempt extracting the adver-
sary’s input. However, since we are using an arbitrary (malicious-secure) OT, we do not know in
advance the number of rewinds required for extracting the receiver’s input. This in turn means
that we cannot correctly set the rewind security of the sub-protocols used in our final MPC protocol
appropriately in advance.

We address this issue via the following strategy. We use another three round (delayed-input) ex-
tractable commitment scheme [PRS02] (ecom) as well as another copy of promise ZK. This copy of
promise ZK proves honest behavior in the first three rounds, and its third message is committed in-
side the extractable commitment. Further, the third round message of this extractable commitment
is such that it allows for polynomial-time extraction (with the possibility of “over-extraction”9).
This, however, comes at the cost that this extractable commitment does not achieve any rewind
security. Interestingly, stand-alone security of this scheme suffices for our purposes since we only
use it in the case where the adversary always aborts in the third round (and therefore, no rewinds
are performed).

The main idea is that by using such a special-purpose extractable commitment scheme, we can
ensure that an a priori fixed constant number of rewinds are sufficient for extracting the committed
value, namely, the promise ZK third round prover message, with noticeable probability. This, in
turn, allows us to set the rewind security of other sub-protocols used in our MPC protocol in advance
to specific constants.

Of course, the adversary may always choose to commit to malformed promise ZK messages
within the extractable commitment scheme. In this case, our simulator may always decide not
to extract adversary’s input, even if the adversary was behaving honestly otherwise. This obviously
would lead to a view that is distinguishable from the real world. To address this issue, we use
a proofs of proofs strategy. Namely, we require the first copy of promise ZK, which is encrypted
inside OT, to prove that the second copy of promise ZK is “accepting”. In this case, if the adversary
commits malformed promise ZK messages within the extractable commitment, the promise ZK
message inside OT will not be accepting. This, in turn, means that due to the security of garbled
circuits, the fourth round messages of the parties will become “opaque”.

Finally, we remark that for technical reasons, we do extract the promise ZK encrypted inside
the OT receiver message in our final hybrid. However, in this particular hybrid, the number of
rewinds required for extraction do not matter since in this hybrid, we only make change inside a
non-interactive primitive (specifically, garbled circuit) that is trivially secure against an unbounded
polynomial number of rewinds.

that are not required by our compiler. Hence, we use a simplified variant of their scheme.
9This means the extractor can output a non ⊥ value if the commitment has no valid opening.

58

4.1.3 Protocol Design Summary

Putting all the various pieces together, we describe the overall structure of the protocol at a high
level to demonstrate the purpose of its various components in the context of the protocol.

For simplicity we consider the messages sent from Pi to Pj . Note that even though Pj is the
intended recipient for the messages in a two party sub-protocol, the messages are broadcast to all
parties. The overview of the protocol messages is presented in Figure 4.1.

Delayed semi-malicious MPC (blue). Pi uses input x and randomness r to compute the messages
msgk for the bounded rewind secure four-round delayed semi malicious protocol Π.

Multiparty Conditional Disclosure of Secrets (red). As discussed earlier, the last message of Π is
not sent in the clear but instead sent inside a garbled circuit GC used to implement MCDS. We use
a four-round oblivious transfer protocol otk to allow the parties to obtain garbled circuit wire labels
corresponding to their witnesses. We defer the discussion on the witness for MCDS below.

Rewind Secure Extractable commitment (green). The same input and randomness used to
compute messages for Π is committed via an extractable commitment recomk. This is done to
enable the simulator to extract the inputs and randomness of the adversary for simulation. As
discussed earlier, we use a three round extractable commitment that achieves bounded rewind
security.

Promise ZK (purple). We use promise ZK in a non-black box manner in our protocol. Specifically, it
consists of a trapdoor generation phase tdk, and a bounded rewind secure witness indistinguishable
proof rwik. As discussed in our proofs of proofs strategy, we actually use two copies of the promise ZK
(indexed by subscripts a and b in the figure), but both of these copies will share a single instance of
the trapdoor generation. At a high level, both rwis prove that either the claim is true or “I committed
to the trapdoor in the non-malleable commitment” (see below). We also note that one of the rwi
copies, specifically, the copy indexed with subscript b is used as a witness for the MCDS mechanism.

Witness Indistinguishable Proof (orange). We also use a regular witness indistinguishable proof
wi (without any rewind security) to establish honest behavior of the parties in the last round of
the protocol. This effectively involves proving that either the last round message was computed
honestly or “I committed to the trapdoor in the non-malleable commitment” (see below).

Extractable commitment (brown). As discussed earlier, we use an extractable commitment ecom
(without rewind security) to implement our proofs of proofs strategy to enable simulation.

Non-malleability (dark blue). We bootstrap non-malleability in our protocol using non-malleable
commitments ncom in a similar manner to prior works [ACJ17, BGJ+18]10. Specifically, in the
honest execution of the protocol, the parties simply commit to a random value r̃. We rely on
specific properties of the ncom, which we do not discuss here and refer the reader to the technical
sections.

Finally, we note that our protocol design uses multiple sub-protocols with bounded rewind
security. We do not discuss how the bounds for the sub-protocols are set here, and instead defer
this discussion to Section 4.4.

10see Section 4.2.5 for discussion on bootstrapping non-malleability using ncom as used in prior works to construct constant
round protocols

59

P
i

P
j

re
co
m

1
m
sg

1
(x
,r
)

td
1

n
co
m

1
rw

i 1
,a

ec
o
m

1
rw

i 1
,b

o
t 1

w
i 1

re
co
m

2
m
sg

2
(x
,r
)

td
2

n
co
m

2
rw

i 2
,a

ec
o
m

2
rw

i 2
,b

o
t 2

w
i 2

re
co
m

3
(x
,r
)

m
sg

3
(x
,r
)

td
3

n
co
m

3
(̃r
)

ec
o
m

1
(r
w
i 3
,a
)

o
t 3
(r
w
i 3
,b
)

G
C
(m

sg
4
(x
,r
))

o
t 4

w
i 3

Fi
gu

re
4.

1:
O

ve
ra

ll
st

ru
ct

ur
e

of
th

e
pr

ot
oc

ol

60

Complexity of the protocol description. One might wonder why our construction is so involved
and whether there is a simpler construction. This is an important question that needs to be ad-
dressed. Unfortunately, our current understanding of the problem does not allow for a protocol
that is easier to describe, but we believe that our solution is less complex than the prior state-of-
the-art solutions [BGJ+18, HHPV18].

4.2 Preliminaries

4.2.1 Extractable Commitment Scheme

We will use a variant of a simple challenge-response based extractable statistically-binding string
commitment scheme ⟨C,R⟩ that has been used in several prior works, most notably [PRS02, Ros04].
We note that in contrast to [PRS02] where a multi-slot protocol was used, here (similar to [Ros04]),
we only need a one-slot protocol.

Protocol ⟨C,R⟩. Let Com(·) denote the commitment function of a non-interactive perfectly binding
string commitment scheme which requires the assumption of injective one-way functions for its
construction. Let n denote the security parameter. The commitment scheme ⟨C,R⟩ is described as
follows.

COMMIT PHASE:

1. To commit to a string str, C chooses k = ω(log(n)) independent random pairs {α0
i , α

1
i }ki=1 of

strings such that ∀i ∈ [k], α0
i ⊕ α1

i = str; and commits to all of them to R using Com. Let
B ← Com(str), and A0

i ← Com(α0
i), A

1
i ← Com(α1

i) for every i ∈ [k].

2. R sends k uniformly random bits v1, . . . , vn.

3. For every i ∈ [k], if vi = 0, C opens A0
i , otherwise it opens A1

i to R by sending the appropriate
decommitment information.

OPEN PHASE: C opens all the commitments by sending the decommitment information for each
one of them.

For our construction, we require a modified extractor for the extractable commitment scheme.
The standard extractor returns the value str that was committed to in the scheme. Instead, we
require that the extractor return i, and the openings of A0

i and A1
i . This extractor can be constructed

easily, akin to the standard extractor for the extractable commitment scheme.
This completes the description of ⟨C,R⟩.
We say that commit phase between C ′ and R′ is well formed with respect to a value ˆstr if there

exist values {α̂0
i , α̂

1
i }ki=1 such that:

1. For all i ∈ [k], α̂0
i ⊕ α̂1

i = ˆstr, and

2. Commitments B, {A0
i , A

1
i }ki=1 can be decommitted to ˆstr, {α̂0

i , α̂
1
i }ki=1 respectively.

3. Let ᾱv1
1 , . . . , ᾱvk

k denote the secret shares revealed by C ′ in the commit phase. Then, for all
i ∈ [k], ᾱvi

i = α̂vi
i .

61

We now state the following simple lemma about extraction from commitments when they are
well formed.

Lemma 1. There exists a PPT extractor algorithm Ext such that, given a set of 2 “well-formed” ex-
ecution transcripts of Com where each transcript consists of the same first round sender message, the
extractor successfully extracts the value committed in each transcript, except with negligible probability.

It is easy to see that two random challenge strings will differ in at least a single position other
than with negligible probability. From the description of the protocol, if the commit phase was well
formed, both commitments at a single position suffice to extract the value. In the sequel, we refer
to this as 2-extractable property of the extractable commitment scheme.

4.2.2 Extractable Commitments with Bounded Rewinding Security

In this section, we describe an extractable commitment protocol that is additionally secure against
a bounded number of rewinds. Since we are interested in the three round protocol, we limit our
discussion in this section to this setting. A simple extractable commitment is a commitment protocol
between a sender (with input x) and a receiver which allows an extractor, with the ability to rewind
the sender via the second and third round of the protocol, to extract the sender’s committed value.
Several constructions of three round extractable commitment schemes are known in the literature
(see, e.g., [PRS02, Ros04] and Section 4.2.1 for an example construction).

When we additionally require bounded rewind security, we shall parameterize this bound by
Brecom. Roughly this means that the value committed by a sender in an execution of the commitment
protocol remains hidden even if a malicious receiver can rewind the sender back to the start of the
second round of the protocol an a priori bounded Brecom number of times. Extraction will then
necessarily require strictly larger than Brecom rewinds.

In the remainder of the section, we describe a construction of a three round extractable commit-
ment protocol with bounded rewind security RECom = (S,R). The construction is adapted from
the construction presented in [BGJ+18], and simplified for our setting since we do not require the
stronger notion of “reusability”, as defined in their work.

In our application, we set Brecom = 4; however, our construction also supports larger values
of Brecom. For technical reasons, we don’t define or prove Brecom-rewinding security property and
reusability property for our extractable commitment protocol. Instead, this is done inline in our
four round MPC protocol.

Construction. Let Com denote a non-interactive perfectly binding commitment scheme based on
injective one-way functions. Let N and Brecom be positive integers such that N−Brecom−1 ≥ N

2 +1.
For Brecom = 4, it suffices to set N = 12. The three round extractable commitment protocol RECom
is described in Figure 4.2.

62

Protocol (S,R): Extractable Commitments with Bounded Rewinding Security

Sender S has input x.

Commitment Phase:
1. Round 1: S does the following:

– Pick N random degree Brecom polynomials p1, . . . , pN over Zq, where q is a prime
larger than 2λ.

– Compute recomS→R
1,ℓ ← Com(pℓ; rℓ) using a random string rℓ, for every ℓ ∈ [N].

– Send recomS→R
1 = (recomS→R

1,1 , . . . , recomS→R
1,N) to R.

2. Round 2: R does the following:

– Pick random values zℓ ←$ Zq for every ℓ ∈ [N].

– Send recomR→S
2 = (z1, . . . , zN) to S.

3. Round 3: S does the following:

– Compute recomS→R
3,ℓ ← (x⊕ pℓ(0), pℓ(zℓ)) for all ℓ ∈ [N].

– Send recomS→R
3 = (recomS→R

3,1 , . . . , recomS→R
3,N) to R.

Decommitment Phase:

1. S outputs p1, . . . , pN together with the randomness r1, . . . , rN used in the first round com-
mitments.

2. R first verifies the following:

– For each ℓ ∈ [N], recomS→R
1,ℓ = Com(pℓ; rℓ).

– Parse recomS→R
3,ℓ = (αℓ, βℓ). Verify that βℓ = pℓ(zℓ).

– For each ℓ ∈ [N], compute xℓ = pℓ(0)⊕ αℓ. Verify that all the xℓ values are equal.

If any of the above verifications fail, R outputs ⊥. Otherwise, R outputs x.

Figure 4.2: Extractable Commitment Scheme recom.

Well-Formedness of recom Transcripts. We now define a “well-formedness” property of an exe-
cution transcript of RECom. Roughly, we say that a transcript (recomS→R

1 , recomR→S
2 , recomS→R

3) is
well-formed w.r.t. an input x and randomness r if:

– N − 1 out of the N tuples recomS→R
3,ℓ = (αℓ, βℓ) (where ℓ ∈ [N]) are “honestly” computed

using randomness r =
(
{pi}Ni=1, {ri}Ni=1

)
in the sense that: each αℓ is a one-time pad of x

w.r.t. the key pℓ(0) where pℓ is a polynomial committed (using randomness rℓ) in the first
round message recomS→R

1 , and each βℓ is a correct evaluation of the polynomial pℓ over the
“challenge” value zℓ contained in recomR→S

2 .

63

We now proceed to formally define the well-formedness property. For any set T , let T [i] denote
the ith element of T .

Definition 24 (Well-Formed Transcripts). An execution transcript (recomS→R
1 , recomR→S

2 , recomS→R
3)

of recom is said to be well-formed with respect to an input x and randomness r =
(
{pi}Ni=1, {ri}Ni=1

)

if there exists an index set I of size N − 1 such that the following holds:

– For every j ∈ |I|, recomS→R
1,I[j] = Com(pI[j]; rI[j]) (AND)

– For every j ∈ |I|, recomS→R
3,I[j] = (x⊕ pI[j](0), pI[j](zI[j])), where recomR→S

2 = (z1, . . . , zN)

We remark that the above well-formedness property is “weak” in the sense that we only require
N − 1 out of the N tuples recomS→R

3,ℓ = (αℓ, βℓ) to be honestly generated (instead of requiring that
all N tuples are honestly generated). This relaxation is crucial to establishing the Brecom-rewinding-
security property for recom.

We now define an “admissibility” property for any input to the extractor.

Definition 25 (Admissible Inputs). An input set (recom1, {recomi
2, recom

i
3}Brecom+1

i=1) is said to be
admissible if for every i, j ∈ [Brecom + 1] s.t. i ̸= j and every ℓ ∈ [N], we have that ziℓ ̸= zjℓ , where
recomt

2 = (zt1, . . . , z
t
N).

Extractor Extrecom. The extractor algorithm Extrecom is described in Figure 4.3.11

Lemma 2. There exists a PPT extractor algorithm Extrecom such that, given a set of (Brecom+1) “well-
formed” and “admissible” execution transcripts of RECom where each transcript consists of the same
first round sender message, the extractor successfully extracts the value committed in each transcript,
except with negligible probability.

Input: An admissible set (recom1, {recomi
2, recom

i
3}Brecom+1

i=1) where ∀i, (recom1, recom
i
2, recom

i
3)

is well-formed w.r.t. some value xi.

1. For every i ∈ [Brecom + 1], parse recomi
2 = (zi1, . . . , z

i
N) and recomi

3 =
(recomi

3,1, . . . , recom
i
3,N+2).

2. For each ℓ ∈ [N]:

– Parse recomi
3,ℓ = (αi

ℓ, β
i
ℓ).

– Using polynomial interpolation, compute a degree Brecom polynomial pℓ over Zq such
that on point ziℓ, pℓ(z

i
ℓ) = βi

ℓ.

– Compute xi
ℓ = (αi

ℓ ⊕ pℓ(0)).

3. For every i ∈ [Brecom], let xi be the value that equals a majority of the values in the set
{xi

1, . . . , x
i
N}. If no such xi value exists, set xi = ⊥.

4. Output (x1, . . . , xBrecom).

11An admissible input set consisting of (Brecom +1) “well-formed” execution transcripts of recom that share the same first
round sender message can be obtained from a malicious sender via an expected PPT rewinding procedure. The expected
PPT simulator in our application performs the necessary rewindings to obtain such transcripts and then feeds them to the
extractor Extrecom.

64

Figure 4.3: Strategy of algorithm Extrecom.

Proof. We now analyze the extraction algorithm. Recall that for every i ∈ [Brecom+1], the transcript
(recom1, recom

i
2, recom

i
3) is well-formed w.r.t. some value xi. By the definition of well-formedness,

we have that for every i, there exists at most one j ∈ [N] such that recomi
3,j was not computed

correctly and consistently with the other recomi
3,j′ . This means that overall, across all i ∈ [Brecom+1]

execution transcripts, there exists at most (Brecom + 1) values of recomi
3,j that were not computed

correctly. This implies that for at least (N − Brecom − 1) values of j, the values recomi
3,j were

computed correctly in all Brecom + 1 transcripts. This means that for every i ∈ [Brecom + 1], (N −
Brecom − 1) out of N values {ki1, . . . , kiN} computed by the extractor are the same. Then, since
N −Brecom− 1 ≥ N

2 +1, we have that the extractor computes the correct values ki and xi for every
i ∈ [Brecom].

4.2.3 Trapdoor Generation Protocol with Bounded Rewind Security

In this section, taken largely verbatim from [BGJ+18], we discuss the syntax, definition and con-
struction for a Trapdoor Generation Protocol with Bounded Rewind Security.

In a Trapdoor Generation Protocol, without bounded rewind security, a sender S (a.k.a. trapdoor
generator) communicates with a receiver R. The protocol itself has no output, and the receiver has
no input. The goal is for the sender to establish a trapdoor upon completion. On the one hand,
the trapdoor can be extracted via a special extraction algorithm that has the ability to rewind the
sender. On the other hand, no cheating receiver should be able to recover the trapdoor.

Syntax. A trapdoor generation protocol TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid,
TDExt) is a three round protocol between two parties - a sender (trapdoor generator) S and receiver
R that proceeds as below.

1. Round 1 - TDGen1(·):
S computes and sends tdS→R

1 ← TDGen1(rS) using a random string rS .

2. Round 2 - TDGen2(·):
R computes and sends tdR→S

2 ← TDGen2(td
S→R
1 ; rR) using randomness rR.

3. Round 3 - TDGen3(·):
S computes and sends tdS→R

3 ← TDGen3(td
R→S
2 ; rS)

4. Output - TDOut(·)
The receiver R outputs TDOut(tdS→R

1 , tdR→S
2 , tdS→R

3).

5. Trapdoor Validation Algorithm - TDValid(·):
Given input (t, tdS→R

1), output a single bit 0 or 1 that determines whether the value t is a valid
trapdoor corresponding to the message td1 sent in the first round of the trapdoor generation
protocol.

In what follows, for brevity, we set td1 to be tdS→R
1 . Similarly we use td2 and td3 instead

of tdR→S
2 and tdS→R

3 , respectively. Note that the algorithm TDValid does not form a part of the

65

interaction between the trapdoor generator and the receiver. It is, in fact, a public algorithm that
enables public verification of whether a value t is a valid trapdoor for a first round message td1.

The protocol satisfies two properties: (i) Sender security, i.e., no cheating PPT receiver can learn
a valid trapdoor, and (ii) Extraction, i.e., there exists an expected PPT algorithm (a.k.a. extractor)
that can extract a trapdoor from an adversarial sender via rewinding.

Extraction. There exists a PPT extractor algorithm TDExt that, given a set of values12 (td1,
{tdi2, tdi3}3i=1) such that td12, td

2
2, td

3
2 are distinct and TDOut(td1, td

i
2, td

i
3) = 1 for all i ∈ [3], outputs

a trapdoor t such that TDValid(t, td1) = 1.

1-Rewinding Security. We define the notion of 1-rewinding security for a trapdoor generation
protocol TDGen. Intuitively, a Trapdoor Generation protocol is 1-rewind secure if it protects a
sender against a (possibly cheating) receiver that has the ability to rewind it once. Specifically, the
receiver is allowed to query the sender on two (possibly adaptive) different second round messages,
thereby receiving two different third round responses from the sender. It should be the case that
the trapdoor still remains hidden to the receiver.

Consider the following experiment between a sender S and any (possibly cheating) receiver R∗.
Experiment E:

– R∗ interacts with S and completes one execution of the protocol TDGen. R∗ receives values
(td1, td3) in rounds 1 and 3 respectively.

– Then, R∗ rewinds S to the beginning of round 2.

– R∗ sends S a new second round message td∗2 and receives a message td∗3 in the third round.

– At the end of the experiment, R∗ outputs a value t∗.

Definition 26 (1-Rewinding Security). A trapdoor generation protocol TDGen = (TDGen1,TDGen2,
TDGen3,TDOut,TDValid) achieves 1-rewinding security if, for every non-uniform PPT receiver R∗ in
the above experiment E,

Pr
[
TDValid(t∗, td1) = 1

]
= negl(λ),

where the probability is over the random coins of S, and where t∗ is the output of R∗ in the experiment
E, and td1 is the message from S in round 1.

4.2.3.1 Construction

We now describe a three round trapdoor generation protocol based on one way functions. We first
sketch the simple construction before providing a formal description. In the first round, the sender
samples a signing key pair and sends the verification key to the receiver. The receiver queries a
random message in the second round, and the sender responds with the corresponding signature
in the third. The trapdoor is defined to be 3 distinct (message,signature) pairs. It is easy to see that
both extraction and 1-rewind security are satisfied for this construction. Now, we formally describe
the construction below.

12These values can be obtained from the malicious sender via an expected PPT rewinding procedure. The expected PPT
simulator in our applications performs the necessary rewindings and then feeds these values to the extractor TDExt.

66

Let S and R denote the sender and the receiver, respectively. Let λ denote the security parameter.
Let (Gen,Sign,Vf) be a signature scheme that is existentially unforgeable against chosen-message
attacks. Such schemes are known based on one-way functions [GMR88].

Protocol: Trapdoor Generation Protocol with Bounded Rewind Security

1. Round 1 - TDGen1(rS):
S does the following:

– Generate (sk, vk)← Gen(rS).

– Send tdS→R
1 = vk to R.

2. Round 2 - TDGen2(tdS→R
1):

R sends a random string m as the message tdR→S
2 to S.

3. Round 3 - TDGen3(tdS→R
1 , tdR→S

2 ; rS):
S computes and sends tdS→R

3 = Sign(sk,m; rm) where rm is randomly chosen.

4. Output: - TDOut(tdS→R
1 , tdR→S

2 , tdS→R
3)

The receiver R outputs 1 if Vf(tdS→R
1 ,m, tdS→R

3) = 1.

5. Trapdoor Validation Algorithm - TDValid(t, td1):
Given input (t, td1), the algorithm does the following:

– Let t = {mi, σi}3i=1.

– Output 1 if m1,m2,m3 are distinct and Vf(td1,mi, σi) = 1 for all i ∈ [3].

Figure 4.4: Trapdoor Generation Protocol ΠTD.

Theorem 14. Assuming the existence of one way functions, the protocol ΠTD described in Figure 4.4
is a 1-rewinding secure trapdoor generation protocol.

We refer the reader to [BGJ+18] for the proof.

Extractor TDExt(·). The extractor works as follows. It receives a verification key vk = td1, and a
set of values {mi, σi}3i=1 such that mi are all distinct and Vf(vk,mi, σi) = 1 for every i ∈ [3]. Then,
TDExt outputs t = {mi, σi}3i=1 as a valid trapdoor. Correctness of the extraction is easy to see by
inspection.

4.2.4 Witness Indistinguishable Proofs with Bounded Rewinding Security

We have previously defined delayed input witness indistinguishable arguments (WI) in Section 2.6.
We now consider the notion of a WI that additionally satisfy Brwi-bounded rewinding security, where

67

the same statement is proven across all the rewinds. We refer to such primitives as Brwi-bounded
rewind secure WI.

The intuition for the definition is similar to that of the trapdoor generation protocol as described
in the previous section. Here, for the three round delayed-input witness indistinguishable argument
we want witness indistinguishability to be preserved as long as the verifier is restricted to rewinding
the prover Brwi-1 times. Specifically, the prover sends its first round message to the verifier, who
then chooses (i) a triple consisting of a statement, and any two corresponding witnesses w0 and
w1; (ii) Brwi-1 second round verifier messages for the single first round prover message, along with
the corresponding statement and witness for that rewind thread. The prover then completes the
protocol, responding to each of the Brwi-1 verifier messages, and using either witness w0 or w1 for
the main thread.

Definition 27 (3-Round Delayed-Input WI with Non-Adaptive Bounded Rewinding Security).
[BGJ+18] Fix a positive integer Brwi. A delayed-input 3-round interactive argument (as defined in
Definition 9) for an NP language L, with an NP relation RL is said to be WI with Brwi-Rewinding
Security if for every non-uniform PPT interactive Turing Machine V ∗, it holds that {REALV ∗

0 (1λ)}λ
and {REALV ∗

1 (1λ)}λ are computationally indistinguishable, where for b ∈ {0, 1} the random variable
REALV

∗

b (1λ) is defined via the following experiment. In what follows we denote by P1 the prover’s
algorithm in the first round, and similarly we denote by P3 its algorithm in the third round. We now
define it formally below.

Experiment REALV
∗

b (1λ):

1. Run P1(1
λ) and denote its output by (rwi1, σ), where σ is its secret state, and rwi1 is the message

to be sent to the verifier.

2. Run the verifier V ∗(1λ, rwi1), who outputs {(xi, wi)}i∈[Brwi−1], xBrwi , wBrwi
0 , wBrwi

1 and a set of
messages {rwii2}i∈[Brwi].

3. For each i ∈ [Brwi − 1], run P3(σ, rwi
i
2, x

i, wi), and for i = Brwi, run P3(σ, rwi
i
2, x

i, wi
b) where P3

is the (honest) prover’s algorithm for generating the third message of the WI protocol. Send the
resulting messages {rwii3}i∈[Brwi] to V ∗.

4. The output of the experiment is the output of V ∗.

The following theorem is proven in [GR19].

Imported Theorem 2 ([GR19]). Assuming non-interactive commitments, for every (polynomial)
rewinding parameter B, there exists a three round delayed-input witness-indistinguishable argument
system with B-rewinding security.

4.2.5 Non-Malleable Commitments

In this section, we recall the definition of non-malleable commitments (NMCOM) and describe some
additional properties that are relevant to our use case. In particular, we define special non-malleable
commitments that capture the exact requirements that we need from a three round NMCOM for our
application to MPC. We then provide an instantiation of such special NMCOM via the scheme of
Goyal et al. [GPR16].

68

We start by proving some background on how NMCOMs are used in many prior works for boot-
strapping non-malleability in a constant-round MPC protocol. We then briefly discuss the issue of
“over-extraction” in NMCOMs and how it guides some of our requirements from special NMCOMs.

Bootstrapping Non-Malleability via NMCOMs. As noted in many prior works, standard sound-
ness guarantees of ZK proofs do not suffice in the design of constant-round MPC protocols. In
particular, since the proofs given by various parties are executed in parallel, we need to ensure
that the proofs given by adversarial parties remain sound even when the honest party proofs are
simulated [Sah99].

Many prior works use the following template to ensure the above property: the parties are re-
quired to send a non-malleable commitment (NMCOM) to a random value, and then prove that
either they are behaving “honestly” or the NMCOM commits to a “trapdoor” string, which is deter-
mined via a separate “trapdoor generation” sub-protocol. Such a use of NMCOM intuitively suffices
to bootstrap non-malleability throughout the protocol. Indeed, the main idea is that in order to en-
sure “simulation soundness” across the hybrids in the security proof, it suffices to prove an invariant
that the adversary never commits to the trapdoor in its NMCOM. If the NMCOM scheme supports
extraction of the committed value, then it is indeed possible to prove that the invariant holds:

– First, the invariant is established in the real world, i.e., the first hybrid, by simply extracting
the value inside adversary’s NMCOM and invoking the security of the trapdoor generation
protocol.

– In subsequent hybrids, we continue to argue that the invariant holds via one of the following
two strategies: (i) In all but one of the hybrids, we use the NMCOM extractor to argue that
the value inside adversary’s NMCOM does not change from the previous hybrid. (ii) In one
specific hybrid – referred to as the “NMCOM-hybrid” – where we switch the value inside the
honest party NMCOM, we simply rely on the non-malleability property of NMCOM to argue
that the value committed by the adversary did not change.

In the design of four-round MPC, due to aborting adversaries, it is imperative to use a three
round NMCOM to implement the above strategy. Towards this end, we rely upon the three round
NMCOM scheme of Goyal et al. [GPR16] in order to minimize the use of assumptions in our
protocol. An important weakeness, however, of their NMCOM scheme is that it suffers from “over-
extraction”, namely, the extractor can output a valid (non-⊥) value even if the adversary’s com-
mitted to ⊥ (i.e., its commitment was not valid). This, unfortunately, leads to a failure in the
implementation of the above strategy as the extractor could output the trapdoor even when the
adversary was committing to ⊥ in the NMCOM.

We crucially observe that a weak “split-state” extractor used inside the security proof of Goyal
et al’s NMCOM scheme satisfies useful properties that suffice for our application. Specifically, it
guarantees the following two properties: (1) If we switch the honest party commitment from m0

to m1, the value extracted from adversary’s NMCOM does not change, (2) If the adversary sends
a well-formed commitment to some value m, then with noticeable probability, the output of the
extractor is m. Using these properties, we can establish simulation-soundness as follows. We first
strengthen the above invariant to claim that a particular extractor, when applied on the adversary’s
NMCOM, does not output the trapdoor. Then, throughout the hybrids, we first use the above
extractor to argue that the value extracted from adversary’s NMCOM is not the trapdoor. Then,
using the second property, we can argue that the adversary must not be committing to the trapdoor.

69

4.2.5.1 Definitions

We start with the definition of non-malleable commitments by Pass and Rosen [PR05] and further
refined by Lin et al [LPV08] and Goyal [Goy11]. (All of these definitions build upon the original
definition of Dwork et al. [DDN91]).

In the real experiment, a man-in-the-middle adversary MIM interacts with a committer C in
the left session, and with a receiver R in the right session. Without loss of generality, we assume
that each session has identities or tags, and require non-malleability only when the tag for the left
session is different from the tag for the right session.

At the start of the experiment, the committer C receives an input val and MIM receives an
auxiliary input z, which might contain a priori information about val. Let MIM⟨C,R⟩(val, z) be a
random variable that describes the value ṽal committed by MIM in the right session, jointly with the
view of MIM in the real experiment.

In the ideal experiment, a PPT simulator S directly interacts with MIM. Let Sim⟨C,R⟩(1
λ, z)

denote the random variable describing the value ṽal committed to by S and the output view of S.
In either of the two experiments, if the tags in the left and right interaction are equal, then the

value ṽal committed in the right interaction, is defined to be ⊥.

Definition 28 (Synchronous Non-malleable Commitments). A 3-round commitment scheme ⟨C,R⟩
is said to be synchronous non-malleable if for every synchronizing13 PPT MIM, there exists a PPT sim-
ulator S such that the following ensembles are computationally indistinguishable:

{MIM⟨C,R⟩(val, z)}λ∈N,val∈{0,1}λ,z∈{0,1}∗ and {Sim⟨C,R⟩(1
λ, z)}λ∈N,val∈{0,1}λ,z∈{0,1}∗

Non-malleability with Respect to Extraction. In this section we consider also a different notion of
non-malleability that we call non-malleability with respect to extraction. Consider the experiment in
which the adversary interacts with an honest committer C in the left session, and with an extractor
ExtNMCom in the right session which guarantees the extraction of the committed value only when
the adversary computes a well-formed commitment (if the commitment is ill-formed that it is not
guaranteed that the extractor outputs ⊥). Without loss of generality, we assume that each session
has identities or tags, and require our non-malleability property to hold only when the tag for the
left session is different from the tag for the right session.

At the start of the experiment, the committer C receives an input m and ANMCom receives an
auxiliary input z, which might contain a priori information about m. Let MIMExt

⟨C,ExtNMCom⟩(m , z) be

a random variable that describes the value ṽal output by ExtNMCom jointly with the view of ANMCom

in the real experiment.
In either of the two experiments, if the tags in the left and right interaction are equal, then the

value ṽal committed in the right interaction, is defined to be ⊥.

Definition 29. A 3-round commitment scheme ⟨C,R⟩ is said to be non-malleable with respect to
extraction if for every synchronizing PPT ANMCom there exists an extractor ExtNMCom such that the
following ensembles are computationally indistinguishable:

{MIMExt
⟨C,ExtNMCom⟩(m0 , z)}λ∈N,m0∈{0,1}λ,z∈{0,1}∗ and {MIMExt

⟨C,ExtNMCom⟩(m1 , z)}λ∈N,m1∈{0,1}λ,z∈{0,1}∗

13A synchronizing adversary is one that sends its message for every round before obtaining the honest party’s message for
the next round.

70

Delayed-input non-malleability. In a delayed-input non-malleable commitment scheme ⟨C,R⟩,
the sender C can specify the message to commit to in the last round of the protocol. Additionally,
we require ⟨C,R⟩ to be secure even against an adversary that picks val adaptively on the first round
received from C. More formally, consider the following two experiments.

1) C and R interact which MIM, and in the second last round MIM sends val to C. C then
commits to val by completing the last round of the protocol. Let MIM0

⟨C,R⟩(z) be a random variable

that describes the value ṽal committed by MIM in the right session, jointly with the view of MIM in
the real experiment.

2) C and R interact which MIM, and in the second last round MIM sends val to C. C then picks
a random string r and commits to r by completing the last round of the protocol. Let MIM1

⟨C,R⟩(z)

be a random variable that describes the value ṽal committed by MIM in the right session, jointly
with the view of MIM in the real experiment.

Definition 30 (Delayed-Input Non-malleable Commitments). A 3-round commitment scheme
⟨C,R⟩ is said to be delayed-input non-malleable if for every PPT MIM, there exists a PPT simula-
tor S such that the following ensembles are computationally indistinguishable:

{MIM0
⟨C,R⟩(z)}λ∈N,z∈{0,1}∗ and {MIM1

⟨C,R⟩(z)}λ∈N,z∈{0,1}∗

In [COSV16] the authors, in order to construct their non-malleable commitment scheme, need
to implicitly show how to transform a standard 3-round non-malleable commitment scheme ⟨C,R⟩
into a 3-delayed-input non-malleable commitment scheme ⟨C ′, R′⟩. The idea is the following.

1. To compute the first round C ′ samples a random message m0 and runs C on input m0.

2. R′ simply runs R, obtains the second round and sends it to C ′

3. C ′, on input the message to be committed m computes m0 ⊕m = m1, run C to obtain the
last message, and send it thogeter with m1.

The opening of ⟨C ′, R′⟩ corresponds to the opening of ⟨C,R⟩, where R′ needs to compute the
exclusive-or of the opened message with m1 to reconstruct the committed message.

It should be easy to see that the above scheme is correct. The proof that the scheme is delayed-
non malleable follow form a simple reduction to the non-malleability of ⟨C,R⟩. We refer to Lemma
3 of [COSV16] for the formal proof. We remark that in [COSV16] the authors do not make a
stand-alone claim, but this is implicit in their proof.

Special Non-Malleable Commitments. We are now ready to define the notion of non-malleability
required for our construction.

Definition 31 (Special Non-malleable Commitments). A three round commitment scheme ⟨C,R⟩
is said to be special non-malleable if:

– ⟨C,R⟩ is synchronous non-malleable and non-malleable with respect to extraction.

– ⟨C,R⟩ is delayed-input.

– ⟨C,R⟩ satisfies last-message pseudorandomness, that is, for every non-uniform PPT receiver
R∗, it holds that {REALR∗

0 (1λ)}λ and {REALR∗

1 (1λ)}λ are computationally indistinguishable,
where for b ∈ {0, 1}, the random variable REALR

∗

b (1λ) is defined via the following experiment.

71

1. Run C(1λ) and denote its output by (com1, σ), where σ is its secret state, and com1 is the
message to be sent to the receiver.

2. Run the receiver R∗(1λ, com1), who outputs a message com2.

3. If b = 0, run C(σ, com2) and send its message com3 to R∗. Otherwise, if b = 1, compute
com3 ←$ {0, 1}m and send it to R∗. Here m = m(λ) denotes |com3|.

4. The output of the experiment is the output of R∗.

Goyal et al. [GPR16] construct three-round special non-malleable commitments satisfying Defi-
nition 31 based on non-interactive commitments.

Imported Theorem 3 ([GPR16]). Assuming non-interactive commitments, there exists a three round
non-malleable commitment satisfying Definition 31.

For completeness, we propose a proof sketch of the above theorem.

4.2.5.2 Proof of Special Non-Malleable Commitments

Let (Com,Dec) be a non-interactive statistically binding commitment scheme, and (E,D) be a split-
state non-malleable code that splits the input into two codewords L and R. The scheme NMCom =
(Sen,Rec) proposed in [GPR16] can be described as follows.
Commitment phase. Let m be the message to be committed.

Sen → Rec: Sen chooses (L,R) ← Enc(m) where L is viewed as a field element in Zq; Sen
also draws r ← Zq at random, compute Com, dec← Com(L||r) and sends Com to Rec.

Rec→ Sen: Rec chooses a random α← Z⋆
q and sends it to Sen.

Sen→ Rec: Sen sends a = rα+ L and R to Rec.

Decommitment phase To decommit, Sen sends dec to Rec.
Intuitively, Sen commits to a polynomial-based 2-out-of-2 secret sharing of L in the first round,

and in the third round sends R along with one share. We now give an intuition about why this
commitment scheme is special non-malleable. We refer the reader to [GPR16] for the formal proof.

Non-malleability against synchronizing PPT adversary. In [GPR16] the authors show how to
use an adversary ANMCom that breaks the non-malleability of (Sen,Rec) to construct two tamper-
ing functions (f, g) that break the security of the underling split-state non-malleable code. The
functions f and g share a partial transcript consisting of the first two messages of an interaction
of (Sen,Rec) with ANMCom and the value a. Note that g contains a non-interactive commitment
of L and this could be an issue given that the non-malleable code is split-state (and therefore g
should not contain information about L). However, this does not represent a problem since L is
committed and from the hiding of the non-interactive commitment L can be replaced with another
value without the adversary noticing that. The output of g simply consists of the value R̃ that is
sent from ANMCom to the receiver in the last round (more details on how g works are given later in
this section).

The function f does not contain any information about R, but in this case the challenging part
is to compute its output since the left part (L̃) of the non-malleable code is committed. However,
f can extract L̃ by rewinding ANMCom. In more details, f on input L chooses a random value R$

72

and sends (a,R$) to ANMCom. Upon receiving (ã$, R̃$) from ANMCom, f rewinds the adversary and
sends a freshly generated second round β̃ on the right and upon receiving β on the left f computes
and sends (b, R) where b = (a − L)(β/α) + L. At this point f receives (b̃, ·) on the right from the
adversary and computes its output, which consists of the constant term on the line spanned by
{(ã$, α̃), (b̃, β̃)}.

We are now ready to complete the description of the function g. This function also shares the
random value R$ and therefore it can compute ã$. At this point g(R) rewinds ANMCom and sends
(a,R) on the left and receives (ã, R̃) on the right. If ã = ã$ then g(R) outputs R̃, otherwise it
outputs ⊥.

Note that for (f, g) to succeed in extracting (L̃, R̃), it must be that the answer ã$ ANMCom pro-
vides when given the random R$ is equal to the ã he provides given R. This will follow from
and additional property that the authors of [GPR16] require on the underling non-malleable code.
Given this property the authors show that the chance that ANMCom answers correctly (i.e., consis-
tently with the linear map he committed to in the first round) given R$ is about the same as the
chance he answers correctly given R. So either both are incorrect with high probability, in which
case ANMCom is always committing to ⊥ and so cannot be mauling; or is it possible to show that f
and g extract the correct value.

Delayed-input property. As we have argued in Section 4.2.5.1 any three round non-malleable
commitment scheme can be turn into a delayed-input non-malleable commitment scheme. It is
worth nothing that the transformation preserves all the property of the original commitment scheme
in this case.

Last-message pseudorandomness. This property comes immediately from the hiding of the non-
interactive commitment Com and from the fact that R is the right state of a split-state non-malleable
code, which is also a 2-out-of-2 secret sharing (like any split-state non-malleable code).

Non-malleability with respect to extraction. To show that this property holds we first need to
construct an extractor ExtNMCom. ExtNMCom interacts with the the adversarial sender using random
coins α acting as the honest receiver in the right session. Let τ = (Com, α, a,R, ˜Com, α̃, ã, R̃) be the
transcript of ANMCom’s view, ExtNMCom extracts L̃ and R̃ in two steps.

– To extract L̃ ExtNMCom chooses a random value R$ and sends (a,R$) to ANMCom. Upon receiv-
ing ã$, R̃$ from ANMCom, f rewinds the adversary and sends a freshly generated second round
β̃ on the right and upon receiving β computes and sends (b, R) where b = (a− L)(β/α) + L.
Upon receiving (b̃, ·) on the right by the adversary, ExtNMCom computes L̃, which consists of
the constant term on the line spanned by {(ã$, α̃), (b̃, β̃)}.

– To extract R̃ ExtNMCom checks if ã = ã$. If it is the case then ExtNMCom outputs D(L̃, R̃),
otherwise he outputs ⊥.

In summary, ExtNMCom simply runs the extraction procedures described by the function f and
g defined in the non-malleability proof of [GPR16] (that we have also sketched above). We now
note that an adversary attacking the property of non-malleability with respect to extraction yields
to an adversary for the non-malleable code. The only difference with the non-malleability proof
of [GPR16] is that we do not need to check whether the extracted values actually corresponds to
the committed value. That is, the adversary could compute an ill-formed commitment that yields

73

to the extraction of a message m ̸= ⊥. We note, however, that if the commitment is well formed
then ExtNMCom outputs the actual committed value (we refer the reader to [GPR16, Claim 8] for
the formal proof).

4.3 Oblivious Transfer with Bounded Rewind Security

In this section we define, and then construct, a strengthening of regular oblivious transfer. We
construct a rewinding secure Oblivious Transfer (OT) assuming the existence of four round OT
protocol. For an OT protocol to be rewind secure, we require security against an adversary who is
allowed to re-execute the second and third round of the protocol multiple times. But the first and
fourth round are executed only once.

4.3.1 Definition

We start by formalizing the notion of a rewind secure oblivious transfer protocol. We shall denote
by OutR⟨S(x), R(y)⟩ the output of the receiver R on execution of the protocol between R with
input y, and sender S with input x. The four round oblivious transfer protocol is specified by four
algorithms OTj for j ∈ [4]; and the corresponding output protocol message is denoted by otj . We
consider a delayed receiver input notion of the protocol where the receiver input is only required
for the computation of ot3.

Definition 32. An interactive protocol (S,R) between a polynomial time sender S with inputs s0, s1
and polynomial time receiver R with input b, is a four round bounded rewind secure oblivious transfer
(OT) if the following properties hold:

Correctness For any selection bit b, for any messages s0, s1 ∈ {0, 1}, it holds that

Pr

[
OutR⟨S(s0, s1), R(b)⟩ = sb

]
= 1

where the probability is over the random coins of the sender S and receiver R.

Security against Malicious Sender with B rewinds. Here, we require indistinguishability security
against a malicious sender where the receiver uses input b[k] in the k-th rewound execution of the
second and third round. Specifically, consider the experiment described below. ∀

{
b0[k], b1[k]

}
k∈[B]

∈
{0, 1} where Experiment Eσ:

1. Run OT1 to obtain ot1 which is independent of the receiver input. Send to A.

2. A then returns {ot2[j]}j∈[B] messages.

3. For each j ∈ [B], run OT3 on (ot1, ot2[j], b
σ[j]) and send the response to A.

4. The output of the experiment is the entire transcript.

We say that the scheme is secure against malicious senders with B rewinds if the experiments E0

and E1 are indistinguishable.

74

4.3.2 Construction

We describe below the protocol ΠR which achieves rewind security against malicious senders. The
Sender S’s input is s0, s1 ∈ {0, 1} while the receiver R’s input is b ∈ {0, 1}.

Components. We require the following two components:

– n ·BOT instances of a 4 round OT protocol which achieves indistinguishability security against
malicious senders.

– GC = (Garble,Eval) is a secure garbling scheme (see Section 2.12).

Protocol. The basic idea is to split the receiver input across multiple different OT executions such
that during any rewind, a different set of OTs will be selected to proceed with the execution thereby
preserving the security of the receiver’s input. The sender constructs a garbled circuit which is used
to internally recombine the various inputs shares and only return the appropriate output. The
protocol is described below.

Protocol (S,R): Oblivious Transfer Protocol with Bounded Rewind Security

Round 1. (ΠR
1) : The receiver R computes the first round message of all the OTs. ∀i ∈ [n], k ∈

[BOT], ot
i,k
1 := OT1

(
1λ; rR

)
and send

{
oti,k1

}
i∈[n],k∈[BOT]

to S. We refer to index i as the outer

index, and k as the inner index.

Round 2. (ΠR
2) : The sender S responds to all of the OT messages. ∀i ∈ [n], k ∈ [BOT], compute

oti,k2 := OT2

(
oti,k1 ; rS

)
and sends

{
oti,k2

}
i∈[n],k∈[BOT]

to R.

Round 3. (ΠR
3) : The receiver now selects only a single OT to continue for i. It then encodes

its input b by computing n additive shares and using each share as an input to a separate OT.
Specifically, receiver R does the following:

– Compute n additive shares of b. Specifically, sample the first n − 1 shares at random
∀ℓ ∈ [n− 1] bℓ ←$ {0, 1} and set the last share bn := b

⊕n−1
ℓ=1 bj .

– Sample within each tuple, the index for which to continue the OT. ∀i ∈ [n], σi ←$ [BOT] .

– Use input bi to compute the receiver message for oti,σi

3 . The other OTs are discontinued.

Specifically, ∀i ∈ [n], compute oti,σi

3 ← OT3

(
bi, ot

i,σi

1 , oti,σi

2 ; rR
)

and send
{
oti,σi

3 , σi

}
i∈[n]

to S.

Round 4. (ΠR
4) : The sender encodes its inputs (s0, s1) in a garbled circuit and uses the corre-

sponding labels to complete the OT protocol.

– Compute garbled circuit:
(
Cot, lab

)
:= Garble (Cot [s0, s1] ; rgc,i), where

Circuit Cot[s0, s1] on input b1, . . . , bn outputs sb where b :=
⊕n

i=1 bi.

75

– For i ∈ [n], compute oti,σi

4 := OT4

(
labi,0, labi,1, ot

i,σi

1 , oti,σi

2 , oti,σi

3 ; rS
)

and send
{
oti,σi

4

}
i∈[n]

to R.

Evaluation. (OTEval′) : The receiver R now evaluates the OT protocol to obtain labels needed
to evaluate the output of the garbled circuit.

– For i ∈ [n], compute l̂abi := OTEval
(
bi, ot

i,σi

1 , oti,σi

2 , oti,σi

3 , oti,σi

4 ; rR
)

– Output s′ := Eval

(
Cot,

{
l̂abi

}
i∈[n]

)

Security. We prove security of our constructed protocol below.

Lemma 3. Assuming receiver indistinguishability of OT against malicious senders, the receiver input
in ΠR remains indistinguishable under BOT-rewinds.

Proof. Suppose the BOT inputs used by the receiver are

b0[1], · · · , b0[BOT] and b1[1], · · · , b1[BOT]

in experiment 0 and 1 respectively, where b[j] is the receiver input in the j-th rewind. We want to
show that an adversarial rewinding sender’s view is indistinguishable in both experiments.

We do this by via a sequence of hybrids, where in hybrid ℓ we change the input of the ℓ-th
rewind. Consider two adjacent hybrids, Hybℓ−1 and Hybℓ which use inputs

b1[1], · · · , b1[ℓ− 1], b0[ℓ], · · · , b0[BOT] and b1[1], · · · , b1[ℓ− 1], b1[ℓ], · · · , b0[BOT]

respectively.
Suppose there is an adversarial sender A that can distinguish Hybℓ−1 and Hybℓ, then we con-

struct an adversary AOT that breaks the indistinguishability security of OT. We now describe the
working of AOT.

To rely on the security of OT, we need to find an instance of OT that is not rewound during the
experiment. Since the OT indices are sampled independently and uniformly, with non-negligible
probability, any given outer index i will have inner indices in each of the BOT rewinds to be distinct.
The probability being non-negligible follows from the fact that BOT is a constant.

We sample an outer index ĩ randomly from [n]. We will expose one of the OTs from this tuple to
an external OT receiver. To determine the index of the exposed OT, ∀i ∈ [n], ℓ ∈ [BOT], sample

σi[ℓ]←$ [BOT].

Here we denote by σi[ℓ], the inner index picked for the ℓ-th rewind. If for ĩ,
{
σĩ[ℓ]

}
ℓ∈[BOT]

are

not distinct, we sample again. Thus, the OT we will expose externally is the one with outer index ĩ,
and inner index σĩ[ℓ].

76

Specifically, on receiving ot1 message from the external challenger set

ot
ĩ,σĩ[ℓ]
1 = ot1.

All other oti,k1 messages are computed honestly, using fresh randomness, by AOT. All first round
messages are sent to A.
A responds with

{
oti,k2 [j]

}
i∈[n],k∈[BOT],j∈[BOT]

where oti,k2 [j] corresponds to the sender message

to be used in the j-the thread.
From our assumption of distinct indices for outer index ĩ, ∀ℓ ̸= ℓ′, σĩ[ℓ] ̸= σĩ[ℓ

′]. This means

that ot
ĩ,σĩ[ℓ]
2 is only going to be picked once across rewinds. Thus ot

ĩ,σĩ[ℓ]
2 can be forwarded to

the external challenger without any fear of rewinding. But we also need to send it two challenge
receiver bits, which we compute below.

For receiver inputs to the OT, we need to generate additive shares: ∀i ∈ [n− 1], ℓ′ ∈ [BOT] \ {ℓ}

bi[ℓ
′]←$ {0, 1}

Now to complete the sharing, we need to set the last share bit appropriately. This is done as
follows: ∀ℓ′,

– if ℓ′ < ℓ,

bn[ℓ
′] := b1[ℓ′]

n−1⊕

i=1

bi[ℓ
′]

– if ℓ′ > ℓ,

bn[ℓ
′] := b0[ℓ′]

n−1⊕

i=1

bi[ℓ
′]

Now for ℓ, we want the ĩ-th share to differ, but all others to be the same. With this in mind,
sample ∀i ∈ [n] \

{
ĩ
}

bi[ℓ]←$ {0, 1}
We set two special shares below:

b∗,0 := b0[ℓ]

n⊕

i=1
i ̸=ĩ

bi[ℓ] and b∗,1 := b1[ℓ]

n⊕

i=1
i ̸=ĩ

bi[ℓ]

Now if we set the challenge to be (b∗,0, b∗,1) then depending on the receiver bit chosen by the
external challenger, we are either in hybrid Hybℓ−1 and Hybℓ.

Once we send the challenge, we get as response the 3round OT message corresponding to the
choice bit sampled by the challenger. The remaining OT messages can be answered internally
using the shares computed. The collected third round messages are now sent to A. Thus, if A can
distinguish the two hybrids with non-negligible probability, then AOT wins the challenge game with
non-negligible probability. The only loss in advantage comes from the probability of sampling BOT

inner indices from the set [BOT] such that the indices are all distinct. Since BOT is a constant, this
still leaves the advantage to be non-negligible.

77

Remark 3. We note that while our construction is proved against malicious senders, for our application
it suffices to have the following two properties:

– bounded rewind security against semi malicious senders.

– standalone security against receivers.

Remark 4. While not relevant to the bounded rewind security of the scheme, we note that in our
applications, a malicious sender might compute the garbled circuit incorrectly. This stems from the fact
that there will be multiple participants evaluating the garbled circuit to compute the OT output. We
will therefore have to prove that the messages of the protocol were in fact computed correctly.

4.3.3 Four Round Delayed Input Multiparty Computation with Bounded Rewind
Security

Looking ahead, for our main result, we will compile an underlying semi-malicious protocol to
achieve malicious security. In order to use the underlying semi-malicious protocol in a black-box
manner, we will require the protocol to satisfy bounded rewind security. We start with an intuitive
definition which we follow by formalizing the intuition.

To start with, we consider a four round delayed input semi-malicious protocols satisfying the
following additional properties, where we denote by msgk the messages of all parties output in the
k-th round by Π.

1. Property 1: msg1 and msg2 of Π contain only messages of OT instances.

2. Property 2: msg1 and msg2 of Π do not depend on the input. The input is used only in the
computation of msg3 and msg4.

3. Property 3: The simulator S simulates the honest parties’ messages msg1 and msg2 via S1
and S2 by simply running the honest OT sender and receiver algorithms.

4. Property 4: msg3 can be divided into two parts: (i) components independent of the OT
messages; and (ii) OT messages.

Here we clarify what it means for a component of a message to be independent of OT messages.
We say a component of msg3 is independent of OT messages if its computation in the third round
is independent of the both the private and public state of OT.

The recent works of [GS18b, BL18] construct two round semi-malicious protocols. Both pro-
tocols when instantiated with a four round OT protocol, satisfy the above structure. This follows
from the fact that when their protocols are instantiated with a four round OT protocol, the non-OT
components of their protocol are executed only in round 3.

The bounded rewind security notion follows in similar vein to the bounded rewind secure prim-
itives we have previously defined. Note that the primary difference here stems from the fact that
the protocol we consider is in the simultaneous message model. We say that a protocol satisfying
the above properties is bounded rewind secure if the protocol remains secure in the presence of an
that adversary is able to rewind the honest parties in the second and third round of the execution.
Specifically, an adversary is allowed to: (a) initially query B − 1 many distinct second round mes-
sages and receive third round messages in response; (b) in the last (B-th) query, the adversary also
includes inputs for the honest parties. The adversary should then be unable to distinguish between

78

the case that the protocol completes from the B-th query onward, where the last round was either
completed with honest inputs provided by the adversary, or simulated.

We consider the bounded rewind security of protocols satisfying the structure defined above,
where only the second and third rounds of the protocol can be rewound. For clarity of exposition,
we will refer to protocols satisfying the properties to be special four round delayed input semi-
malicious MPC protocols.

Definition 33 (Bounded rewind secure special four round delayed input semi-malicious MPC).
A special four round delayed input semi-malicious MPC protocol is said to be secure against B rewinds
against a semi malicious adversary if the outputs of the experiments E0 and E1 are indistinguishable.
The experiments are parameterized by the total number of parties n and the total number of corrupted
parties t. We denote the set of honest parties as H, and correspondingly the set of adversarial parties
as H. Transk denotes the transcript of the first k rounds, and by extension Transk,ℓ is the transcript of
the first k rounds on rewind ℓ. The experiment Eσ with σ ∈ {0, 1} is defined as follows.

1. Compute ∀i ∈ H, msg1,i := Π(ri) and send to A.

2. Receive
{
msg1,i

}
i∈H from A.

3. Compute ∀i ∈ H, msg2,i := Π(Trans1, ri) and send to A.

4. Receive
{
msg2,i,ℓ

}
i∈H,ℓ∈[B−1]

from A

5. Compute responses to the queries as follows. ∀ℓ ∈ [B], compute third round messages as: ∀i ∈
H, msg3,i,ℓ ← Π(0,Trans2,ℓ, ri). Send

{
msg3,i,ℓ

}
i∈H,ℓ∈[B]

to A.

6. Receive
(
{xi}i∈[n] , {ri}i∈H

)
and

{
msg2,i

}
i∈H from the A.

7. Based on the value of σ, the the messages are computed as follows:

– if σ = 0, compute the third and fourth round messages of the last query using the inputs
provided. Specifically, compute ∀i ∈ H, msg3,i ← Π(xi,Trans2, ri), and send

{
msg3,i

}
i∈H

to A. On receiving,
{
msg3,i

}
i∈H, compute ∀i ∈ H, msg4,i ← Π(xi,Trans3, ri), and send to

A.

– if σ = 1, simulate the third and fourth round messages of the last query. Specifically,
compute

{
msg3,i

}
i∈H ← S3

(
Trans2, {ri}i∈H

)
, and send

{
msg3,i

}
i∈H to A. On receiving,

{
msg3,i

}
i∈H, compute

{
msg4,i

}
i∈H ← S4

(
Trans3, {xi}i∈H , {ri}i∈[n]

)
, and send to A.

8. The output of the experiment is the view of the adversary A.

Lemma 4. The semi malicious protocols of [GS18b, BL18], when instantiated with our constructed 4
round OT with bounded rewind security, satisfies the above definition. The rewind security parameter
of the resultant protocol is identical to that of the rewind secure parameter of the OT with bounded
rewind security.

We refer the reader to Remark 3 for the sufficient properties from the underlying oblivious
transfer (OT) with bounded rewind security.

79

Proof sketch. We briefly describe why the resultant protocol is rewind secure. This primarily
follows from the structure of the protocols and the bounded rewind security of the OT scheme.

To argue security, consider augmenting the protocol to allow additional threads that execute
only the second and third round of the protocol multiple times. The adversary has control over
what messages to send in each of the threads. On these threads, the honest inputs used are always
going to be 0, with fresh randomness sampled for each thread. From the structure of the protocol,
other than the OT, all components of the protocol are oblivious to rewinds in the second and third
round. This follows from the fact that the components have messages no earlier than the third
round.

Note that since fresh randomness is sampled to compute the third round of the protocol, this
is akin to restarting the components (other than OT) with fresh randomness. Thus, when we have
to rely on the bounded rewind security of OT, the other components of the third round can be
computed without knowledge of the private state of the OT challenger.

4.4 Four Round MPC

Building Blocks. We list below all the building blocks of our protocol.
– Trapdoor Generation Protocol: TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid,TDExt)

is a three round Btd-rewind secure trapdoor generation protocol based on one-way functions
(see Section 4.2.3). We set Btd to be 2.
In our MPC construction, we use a “multi-receiver” version of TDGen that works as follows:
whenever a sender party i sends its first round message td1, all of the other (n−1) parties send
a second round receiver message td2,i. The sender now prepares td2 = (td2,1|| . . . ||td2,n−1),
and then uses it to compute td3. All the (n−1) receivers individually verify the validity of td3.

– Delayed-Input WI Argument: WI = (WI1,WI2,WI3,WI4) is a three round delayed-input
witness indistinguishable proof system (see Section 4.2.4), where WI4 is used to compute the
decision of the verifier.

– Bounded-Rewind Secure WI Argument: RWI = (RWI1,RWI2,RWI3,RWI4) is a three round
delayed-input witness-indistinguishable proof with Brwia -rewind security (see Section 4.2.4).
RWI4 is used to compute the decision of the verifier. We will use two different instances of
RWI that we will refer to as RWIa and RWIb, where the subscripts a and b denote the different
instances. We set their respective rewind security parameters Brwia and Brwib to be some fixed
polynomial.

– Special Non-malleable Commitment: NMCom = (NMCom1,NMCom2,NMCom3) is a three
round special non-malleable commitment scheme (see Section 4.2.5). Let ExtNMCom denote
the extractor associated with NMCom.

– Bounded-Rewind Secure Extractable Commitment: RECom = (RECom1,RECom2,RECom3)
is the three round Brecom-rewind secure delayed-input extractable commitment based on non-
interactive commitments (see Section 4.2.2). We set rewinding security parameter Brecom to
be 4. ExtRECom is the extractor associated with RECom.

– Extractable Commitment: Ecom = (Ecom1,Ecom2,Ecom3,ExtEcom) is the three round delayed-
input extractable commitment scheme based on statistically binding commitment schemes
(see Section 4.2.1). They satisfy the 2-extraction property.

80

– Delayed Semi-Malicious MPC: Π is a four round BΠ-bounded rewind secure delayed input
MPC protocol based on oblivious transfer (see Section 4.3.3). We set BΠ to be 9.

– Garbled Circuits: GC = (Garble,Eval) is a secure garbling scheme (see Section 2.12). We
denote the labels {labi,0, labi,1}i∈[L] by lab. We will often partition the labels of the garbled
circuit to indicate the party providing the input corresponding to the label indices, and denote
this by lab|j for party j.

– Oblivious Transfer: OT = (OT1,OT2,OT3,OT4) is a four round oblivious transfer proto-
col. We abuse notation slightly and use this as implementing parallel OT executions where
the receiver’s input is a string of length ℓ and the sender now has ℓ pairs of inputs. We re-
quire regular indistinguishability security against a malicious sender. In addition, we require
extraction of the receiver’s input bit.

Levels of rewind security. We recall the notion of bounded-rewind security and the need for levels
of rewind security. Bounded-rewind security, as in [BGJ+18], is used in the security proof to argue
indistinguishability in intermediate hybrids. The main idea is that when arguing indistinguishabil-
ity of two hybrids, to derive a contradiction it suffices to build an adversary with non-negligible
success probability. As such, as long as the adversary does not abort with some non-negligible prob-
ability (which is indeed true), a small constant number of rewinds are sufficient for extracting with
non-negligible probability. The exact bounded-rewind security constants for various primitives are
carefully set to establish various “levels” of security.

For primitives with bounded rewind security, we require

Brwia , Brwib , BΠ > Brecom > Btd

where they denote the total number of rewinds (including the main thread) that they are secure
against. In addition, we require all of them to be larger than the number of threads required to
extract from NMCom and Ecom. For the above primitives, we have Brwia = Brwib = poly(λ) (for
some fixed polynomial), BΠ = 9, Brecom = 4 and Btd = 2 thus satisfying our requirements.

Notation for Transcripts. We introduce a common notation that we shall use to denote partial
transcripts of an execution of different protocols that we use in our MPC construction. For any
execution of protocol X, we use TX [ℓ] to denote the transcript of the first ℓ rounds.

NP languages. We define the NP languages used for the three different proof systems that we use
in our protocol. We denote statements and witnesses as st and w, respectively.

1. RWIa: We use RWIa for language La, which is characterized by the following relation Ra:

st :=
(
TΠ[2],

{
Tj

recom[3]
}
j∈[n]

, {msgℓ}ℓ∈[3] ,Tncom[3], td1
)

w :=
(
n, r,

{
rjrecom

}
j∈[n]

, t, rncom
)

Ra(st,w) = 1 if either of the following conditions is satisfied:
(a) Honest: all of the following conditions hold:

– ∀j, Tj
recom[3] is a well-formed transcript of RECom w.r.t. input (n, r) and ran-

domness rjrecom.

81

– for every ℓ ≤ 3, msgℓ is an honestly computed ℓth round message in the
protocol Π w.r.t. input n, randomness r and the first (ℓ − 1) round protocol
transcript TΠ[ℓ− 1].

(b) Trapdoor: Tncom[3] is an honest transcript of NMCom w.r.t. input t and random-
ness rncom (AND) t is a valid trapdoor w.r.t. td1

2. RWIb: We use RWIb for language Lb, which is characterized by the following relation Rb:

st :=

({
Tj

rwia
[2], stja,T

j
ecom[3]

}
j∈[n]

,Tncom[3], td1

)

w :=

({
rjrwia ,w

j
a, rwi

j
3,a, r

j
ecom

}
j∈[n]

, t, rncom

)
.

Rb(st,w) = 1 if either of the following conditions is satisfied:
(a) Honest: all of the following conditions hold:

– ∀j, Tj
ecom[3] is a well-formed transcript of Ecom w.r.t. input

{
rwik3,a

}
k∈[n]

and

randomness rjecom.

– ∀j, Tj
rwia

[2]||rwij3,a is an honestly computed transcript of RWIa for La with
statement stja, witness wj

a and randomness rjrwia . a

(b) Trapdoor: Tncom[3] is an honest transcript of NMCom w.r.t. input t and random-
ness rncom (AND) t is a valid trapdoor w.r.t. td1

aSince RWI is not publicly verifiable, the relation establishes that the RWI prover messages were computed
honestly w.r.t. the witness and randomness for the statement.

3. WI: We use WI for language Lc, which is characterized by the following relation Rc:

st :=

(
TΠ[3],

{
Tj

recom[3],T
j
rwi[2], st

j
b,T

j
ot[4]

}
j∈[n]

,C,Tncom[3], td1

)

w :=

(
n, r,

{
rjrecom, r

j
ot, r

j
rwi

}
j∈[n]

,msg4, rgc, t, rncom

)

Rc(st,w) = 1 if either of the following conditions is satisfied:
(a) Honest: For every j, all of the following conditions hold:

– Tj
recom[3] is a well-formed transcript of RECom w.r.t. input (n, r) and random-

ness rjrecom.

– msg4 is honestly computed round 4 message of Π w.r.t. n, randomness r and
transcript TΠ[3].

– (C, lab) is honest garbling of C that contains hardwired values

msg4,
{
Tj

rwi[2], st
j
b, r

j
rwi

}
j∈[n]

, using randomness rgc. (See Figure 4.5.)

82

– otj4 is honestly computed using lab|j , randomness rjot and transcript Tj
ot[3].

(Tj
ot[4] = Tj

ot[3]∥otj4).

(b) Trapdoor: Tncom[3] is an honest transcript of NMCom w.r.t. input t and random-
ness rncom (AND) t is a valid trapdoor w.r.t. td1

C

[
msg4,

{
Tj

rwib
[2], stjb, r

j
rwib

}
j∈[n]

]

Input: {rwij3,b}j∈[n]

– If for every j ̸= i, RWI4
(
stjb,T

j
rwib

[2]∥rwij3,b; r
j
rwib

)
= 1, output msg4;

– Else, output ⊥.

Figure 4.5: Circuit C

4.4.1 The Protocol

In this section, we describe our four round MPC protocol between n players P1, · · · , Pn. Let xi
denote the input of party Pi. At the start of the protocol, each party samples a sufficiently long
random tape to use in the various sub-protocols; let rX denote the randomness used in sub-protocol
X.

Notational Conventions. We establish some conventions for simplifying notation in the protocol
description. We only indicate randomness as an explicit input for computing the first round message
of a sub-protocol; for subsequent computations, we assume it to be an implicit input. Similarly, we
assume that any next-message of a sub-protocol takes as input a partial transcript of the “previous”
rounds, and do not write it explicitly. Whenever necessary, we augment our notation with super-
script i → j to indicate the a instance of an execution of a sub-protocol between a “sender” i and
“receiver” j (where sometimes, the sender is a prover and receiver is a verifier). When the specific
instance is clear from context, we shall drop the superscript. When we wish to refer to multiple
instances involving a party i, we will use the shorthand superscript i → • or • → i, depending
upon whether i is the sender or the receiver. For example, Ti→•

X [ℓ] will be a shorthand to indicate{
Ti→j

X [ℓ]
}
j∈[n]

.

We will sometimes use explanatory comments within the protocol description, denoted as //-
comment. Finally, we note that all messages in the protocol are broadcast; if any party aborts
during the first three rounds of the protocol, it broadcasts an abort in the subsequent round. We do
not write this explicitly in the protocol, and assume it to be implicit. We now proceed to describe
the protocol.

Protocol: Four Round MPC

83

Round 1: Pi computes and broadcasts the first round messages of the following protocols:
1. Delayed semi-malicious MPC Π: msg1,i ← Π1 (ri).

2. Sender message of TDGen: td1,i ← TDGen1 (rtd,i).

For every j ̸= i:
3. Prover message of the three delayed-input WI argument systems

– WI: wii→j
1 ←WI1(r

i→j
wi).

– RWIa: rwii→j
a,1 ← RWI1(r

i→j
rwia

).

– RWIb: rwi
i→j
b,1 ← RWI1(r

i→j
rwib

).

4. Sender message of the three delayed-input commitment schemes

– Ecom: ecomi→j
1 ← Ecom1(r

i→j
ecom).

– RECom: recomi→j
1 ← RECom1(r

i→j
recom).

– NMCom: ncomi→j
1 ← NMCom1(r

i→j
ncom).

5. Receiver message of OT: otj→i
1 ← OT1

(
rj→i
ot

)
.

Round 2: Pi computes and broadcasts the second round messages of the following protocols:
1. Delayed semi-malicious MPC Π: msg2,i ← Π2.

For every j ̸= i:
2. Receiver message of TDGen: tdi→j

2 ← TDGen2.

3. Verifier message of the three delayed-input WI argument systems

– WI: wij→i
2 ←WI2

– RWIa: rwij→i
a,2 ← RWI2

– RWIb: rwi
j→i
b,2 ← RWI2

4. Receiver message of the three delayed-input commitment schemes

– Ecom: ecomj→i
2 ← Ecom2.

– RECom: recomj→i
2 ← RECom2.

– NMCom: ncomj→i
2 ← NMCom2.

5. Sender message of OT: oti→j
2 ← OT2.

Round 3: Pi computes and broadcasts the third round messages of the following protocols:
1. Delayed semi-malicious Π: msg3,i ← Π3 (xi) using input xi. //First step where Pi is using

its input.

2. TDGen: td3,i ← TDGen3.

For every j ̸= i:
3. NMCom: ncomi→j

3 ← NMCom3(̃rj) to commit to a random r̃j .

4. RECom: recomi→j
3 ← RECom3(xi, ri) to commit to (xi, ri).

84

5. RWI: rwii→j
a,3 ← RWI3

(
sti→j

a ,wi→j
a

)
to prove that Ra(st

i→j
a ,wi→j

a) = 1, where
Statement sti→j

a := (TΠ[2],T
i→•
recom[3], {msgℓ,i}ℓ∈[3],T

i→j
ncom[3], td1,j)

“Honest” witness wi→j
a := (xi, ri, r

i→•
recom)

6. Ecom: ecomi→j
3 ← Ecom3

(
rwii→•

a,3

)
to commit to rwii→•

a,3 .

7. RWIb: rwi
i→j
b,3 ← RWI3(st

i→j
b ,wi→j

b) to prove that Rb(st
i→j
b ,wi→j

b) = 1, where

Statement sti→j
b := (Ti→•

rwia [2], st
i→•
a ,Ti→•

ecom[3],T
i→j
ncom[3], td1,j)

“Honest” witness wi→j
b := (ri→•

rwia ,w
i→•
a , rwii→•

a,3 , ri→•
ecom)

8. OT: Receiver message otj→i
3 ← OT3(rwi

i→j
b,3) using input rwii→j

b,3 .

Round 4: Pi computes and broadcasts the following messages:
1. If ∃j ̸= i such that TDValid(td1,j , td2,j , td3,j) ̸= 1 , abort.

//where td2,j := (td1→j
2 || · · · ||tdn→j

2).

2. Delayed semi-malicious MPC Π: Fourth round message msg4,i ← Π4.

3. Garbled Circuit: Ci, where (Ci, labi)← Garble(C[msg4,i,T
•→i
rwib

[2], st•→i
b , r•→i

rwib
]; rgc,i).

Circuit C is defined in Figure 4.5.

For every j ̸= i:
4. OT: Fourth round sender message oti→j

4 ← OT4

(
labi|j

)
using input labi|j

//labi|j denotes labels corresponding to the input wires for Pj ’s input.

5. OT: Receiver randomness rj→i
ot . //This is used by other parties to compute OT output.

6. WI: wii→j
3 ←WI3

(
sti→j

c ,wi→j
c

)
, to prove that Rc(st

i→j
c ,wi→j

c) = 1, where
Statement sti→j

c := (TΠ[3],T
i→•
recom[3],T

•→i
rwib [2], st

•→i
b ,Ti→•

ot [4],Ci,T
i→j
ncom[3], td1,j)

“Honest” witness wi→j
c := (xi, ri, r

i→•
recom, r

i→•
ot , r•→i

rwib ,msg4,i, rgc,i)

Output Computation: Pi computes the following:

1. If ∃j ̸= i, s.t. WI4(st
j→i
c ,Tj→i

wi [3]) ̸= 1, output ⊥ and abort.

2. Compute OT outputs: ∀j ̸= i,∀k ̸= {i, j},
l̂abj|k ← OTEval(Tj→k

ot [4]; rj→k
ot)

3. Evaluate garbled circuits: ∀j ̸= i, m̂sg4,j ← Eval(Cj , l̂abj), where l̂abj :=

(l̂abj|1 || · · · ||l̂abj|n).
If any evaluation returns ⊥, then output ⊥ and abort.

4. Output yi ← OUT(xi,TΠ[4]; ri), where TΠ[4] includes TΠ[3] and m̂sg4,j for every j.

Our main result is stated in the following theorem.

Theorem 15. Assuming the hiding property of oblivious transfer, the hiding property of extractable
commitment, the hiding property of extractable commitment with bounded rewind security, delayed

85

semi malicious protocol with bounded rewind security computing any function F , special non-malleable
commitments, witness indistinguishable proofs with bounded rewind security, security of garbled cir-
cuits, trapdoor generation protocol with bounded rewind security, in addition to the correctness of
these primitives, then the presented protocol is a four round protocol for F secure against a malicious
dishonest majority.

Remark 5. All the above primitives can be based on one-way functions, non-interactive commitments
and oblivious trasnfer (OT). In a recent note by Lombardi and Schaeffer [LS19], they give a con-
struction of a perfectly binding non-interactive commitment based on perfectly correct key agreement.
As they point out, such key agreement schemes can be based on perfectly correct oblivious transfer
[GKM+00]. This gives us both a non-interactive commitment schemes, and one-way functions, based
on perfectly correct oblivious transfer. Thus it suffices to instantiate all our primitives using just oblivi-
ous transfer.

We thus have the following corollary.

Corollary 6. Assuming polynomially secure oblivious transfer with perfect correctness, our constructed
protocol is a four round multiparty computation protocol for any function F .

The complete security analysis of the above protocol is presented in the Section 4.5. Below we first
present a high level description of the main ideas of the proof and how the bounded rewind-security
parameters are set.

4.4.1.1 Overview of Security Proof

The discussion below is informal, and not a complete picture of the simulator and hybrids. Our
intent is to give an outline of the key hybrids and simulation steps to convey the main ideas. This
will already highlight the need for various levels of rewind security, one of the main challenges in
proving security. There are lots of other challenges that we do not discuss here, and similar to prior
works, the full security analysis is much more complex and we refer the reader to Section 4.5 for
the analysis.

One particular challenge that we ignore is that of an aborting adversary, either implicitly or
explicitly, in the first three rounds of the protocol. The case of an explicitly aborting adversary is
dealt with in a similar manner to [BGJ+18, GK96a] by initially sampling a partial transcript, using
dummy inputs, to determine if the adversary aborts, and then re-sampling the transcript in case the
adversary does not abort. For an implicitly aborting adversary, the simulator (via extraction) can
determine if the adversary aborted, but honest parties are not aware of this in the first three rounds
of the protocol. This case relies on the security of the multi-party CDS (via OT and garbled circuits)
to deal with the implicit aborts. Stepping around these challenges, the main steps in the simulation
involve (a) rewinding the adversary to extract the trapdoor and inputs; (b) completing the witness
indistinguishable arguments using the extracted trapdoor; (c) simulating the underlying protocol
using the output obtained from the ideal functionality.

Key Hybrid Components. We give below a high level overview of some key hybrids in keeping
with our simplified description of the simulator above. This will allow us to discuss our specific
choices for the level of rewinds.

– The first hybrid is identical to the real protocol execution. Each witness indistinguishable (WI)
argument in our protocol allows for a trapdoor witness, arising from the trapdoor generation

86

protocol and the non-malleable commitment (NMCom). We would like it to be the case that
a simulator is able to derive the trapdoor and produce a simulated transcript via the trapdoor
witness, an adversary should not be in possession of a trapdoor witness thereby forcing honest
behavior if the witness indistinguishable argument is accepting.

In order to argue that the adversary is not in possession of the trapdoor witness, we need to
ensure the following invariant: the adversary does not commit to the trapdoor inside of the
NMCom.

In order to do so in this hybrid, we rely on the rewind security of the trapdoor generation
protocol. Specifically, we extract from the NMCom by rewinding the adversary once in the
second and third round (two total executions of the second and third round). If indeed the
adversary was committing to the trapdoor, the extraction is successful with some noticeable
probability and thereby breaking the rewind security of the trapdoor generation protocol.
Note, as observed in [BGJ+18], to arrive at a contradiction via reduction it is sufficient to
extract with noticeable (as opposed to overwhelming) probability. This explains why we
require Btd ≥ 2.

For each change that we subsequently make through the various primitives, we will bootstrap
the above technique, and argue that this invariant continues to hold. Specifically, in order
to arrive at a contradiction, we will extract from the NMCom to break the security property
of the corresponding primitive if the invariant ceases to hold. This already gives us a flavor
for primitives to be secure against (at least) two rewinds needed for the extraction from the
NMCom.

– In this hybrid, the simulator creates sufficient rewind execution threads in order to extract the
adversary’s input and the trapdoors needed to prove the WI using the trapdoor witness. These
rewind threads have the same first round messages as the “main” execution thread, but the
second and third round messages are computed in each rewind thread with fresh randomness.
The rewind threads terminate on completion of the third round of the protocol.

– In the previous hybrid, the simulator is still using the honest inputs in the rewind threads. In
this hybrid the rewind threads are switched from using the honest party’s inputs, to an honest
execution with input 0. Note that these threads finish by the end of the third round.

While the changes made in this hybrid are done in a sequence of steps, and needs to be argued
carefully, the sequence closely resembles the changes that will be made in the main execution
thread below. Therefore, we primarily focus on the hybrids pertaining to the main execution
thread.

– In this hybrid, the simulator uses the trapdoors extracted from the rewind threads to commit
to the trapdoor inside the NMCom on the main execution thread. In order to argue indistin-
guishability, we perform a reduction to an external NMCom challenger. In order to generate
the transcript internally, and complete the reduction, we need to rewind the adversary to get
the trapdoor and inputs. But this causes a problem since the rewind threads might require
responses to challenges that are meant for the external challenger. Here, we rely on the fact
that the third round of our instantiated NMCom has pseudorandom messages, allowing us to
respond to adversarial queries in the third round, that cannot be forwarded to the external
NMCom challenger. This prevents the need for bounded rewind security from the NMCom.

– In a sequence of sub-hybrids, the simulator uses the extracted trapdoor to complete both
the bounded rewind secure witness indistinguishable arguments using the trapdoor witness.

87

As seen above, for the reduction we will need to rewind the adversary to extract, thereby
rewinding the external challenger. Since we require extraction of the adversary’s inputs, the
parameter for the bounded rewind secure witness indistinguishable argument needs to satisfy
Brwi > Brecom.

– In this hybrid, the simulator uses the extracted trapdoor to complete the witness indistin-
guishable argument. Since the third round of this protocol is completed in the fourth round
of our compiled protocol, rewinding the adversary to extract the trapdoor and input in the
second and third round circumvents issues discussed above. Therefore, we don’t require this
primitive to be rewind secure.

– In this hybrid, the simulator switches to committing to 0 inside the rewind secure extractable
commitment (RECom). Unlike the previous cases, this is potentially circularity since the
arguments above do not directly extend. This is because it cannot be the case that the external
challenger remains secure if we rewind the adversary Brecom times to extract its input.

Instead, this is argued carefully where initially we argue that switching to a commitment of
a “junk” value in the third round of the RECom doesn’t affect our ability to extract from the
adversary. This “junk” commitment can be made without knowledge of any randomness of
the specific RECom instance. To argue this, we rely on the bounded rewind security of the
extractable commitment, while still extracting the trapdoor to complete the transcript. This
gives us the requirement that Brecom > Btd. This then allows for extraction of input in the
reduction without violating rewinding circularity since, on the look ahead threads to extract,
we can commit to junk without affecting input extraction.

– In this hybrid, the simulator simulates the transcript of the underlying bounded rewind se-
cure protocol Π. Here too, we require extracting the inputs in order to send it to the ideal
functionality. Therefore, we require BΠ > Brecom.

4.5 Full Security Proof

We now present the complete security analysis of our constructed protocol. Consider a malicious
non-uniform PPT adversary A who corrupts t < n parties.

4.5.1 Overview of the Simulation

Before providing a formal description of the simulator, we provide a high level overview of the
various steps in our simulation strategy:

Step 1: Check Adversary Abort The first thing our simulator does is to determine if the adversary
aborts in the first three rounds of the protocol. If so, the adversary can simulate the first three
rounds using input 0. But there is a small subtlety here. By the end of the third round, none
of the proofs are sent in the clear. It is possible that the adversary is implicitly aborting by
sending incorrect messages, and hence the proofs will fail, but the honest parties are unaware
of this.

Since they both constitute as aborts, we want to treat them identically. But in the latter
case, we’re still required to send the fourth round messages of the honest parties, since as
mentioned earlier, they aren’t aware of an implicit abort until the fourth round.

88

– if the adversary aborts in a manner that is identifiable by the honest parties, i.e. by
not sending the protocol message or an identifiable incorrect message (such as failed
trapdoor validity), the simulator just outputs an aborted transcript.

– if the adversary aborts implicitly, then we set all the garbled circuits to output ⊥.

This step is performed so as to ensure that if an adversary aborts with a disproportionately
high probability, we don’t have to bother attempting to simulate all the other components in
the protocol. In the case where there the adversary explicitly aborts, the simulation ends here.

Step 2: Rewinding If the adversary has not aborted, we need to produce a non aborting transcript.
To enable us to do so, we need to first extract relevant information. This is done by creating
multiple “look-ahead” threads that share a common first round prefix with the main thread.
On the look ahead threads, we’re using input 0, as in the previous step, to compute the first
three rounds honestly (with respect to input 0).

These threads also help us estimate the probability that an adversary does not abort. With
sufficiently many look-ahead threads, we can extract all the relevant information.

Step 3: Input and Trapdoor Extraction With sufficiently many look-ahead threads from the rewind-
ing step above, we can extract all the relevant information.

Step 4: Abort Probability Estimation Depending on the number of threads created to in the rewind-
ing step to have sufficiently many threads to extract, we can estimate the probability of abort.

Step 5: Re-sampling Main Thread Now that we have extracted the trapdoor information and in-
put, we need to sample the “main thread”, which corresponds to the actual view of the ad-
versary. Note we are at this point because the adversary did not abort, and thus to avoid
skewing the distribution of aborting transcripts, we must force a non-aborting transcript on
to the adversary. We use the earlier estimate of the non-aborting probability of the adversary
to repeatedly try to force the transcript. By a careful analysis, this step will succeed other than
with negligible probability.

Step 6: Query the Ideal Functionality Given that we have managed to force a non-aborting tran-
script, corresponding to the first three rounds, on the adversary, we need to simulate the last
round of the protocol. This is done by first querying the ideal functionality using the extracted
inputs.

Step 7: Extract Proofs from OT It is still possible that the adversary has put in non-accepting
proofs as the OT receiver input even though it did not implicitly abort. We want to rely
on the “opaqueness” of the garbled circuits in such a situation. To do so, we must extract
from the oblivious transfer to determine which circuits to set to output ⊥.

Step 8: Finishing the Main Thread Given the output received from the ideal functionality, and
knowledge of whether the adversary implicitly aborted, or sent incorrect proofs in the OT, we
simulate the last round of the protocol and appropriately compute the garbled circuits.

While the above suffices for a high level overview of our strategy, the proof is quite delicate
involving the security levels of the various primitives.

89

4.5.2 Simulator Sim

We provide a full description of the simulator Sim below. We note that Sim also performs simple
checks akin to the protocol description in order to send an abort message if it receives one. For
simplicity, we have not explicitly stated these checks in the below description. Also, as in our
protocol description, we shall assume that the protocols have partial state and we do not specify
the state as input when we make a protocol call.

Step 1 - Check Adversary Abort: In this step, Sim checks if the adversary aborts prior to the com-
pletion of the third round. This can be via either an implicit or explicit abort.

1. Round 1:

Compute the first round message of all honest parties of the underlying protocol Π,

– {msg1,i}Pi∈H ← S1
(
1λ; rS

)

where H denotes the set of honest parties. Recall that this is done as just the honest
execution of the first round on behalf of the honest players Pi using randomness rS :=
{ri}Pi∈H. This is sent to A along with the messages computed below.

For each honest party Pi, Sim follows the honest party protocol in the first round of the
following protocols and sends the messages to A:

(a) Sender message of TDGen: td1,i ← TDGen1 (rtd,i).

For every j ̸= i:

(b) Prover message of the three delayed-input WI argument systems

– WI: wii→j
1 ←WI1(r

i→j
wi).

– RWIa: rwii→j
a,1 ← RWI1(r

i→j
rwia

).

– RWIb: rwi
i→j
b,1 ← RWI1(r

i→j
rwib

).

(c) Sender message of the three delayed-input commitment schemes

– Ecom: ecomi→j
1 ← Ecom1(r

i→j
ecom).

– RECom: recomi→j
1 ← RECom1(r

i→j
recom).

– NMCom: ncomi→j
1 ← NMCom1(r

i→j
ncom).

(d) Receiver message of OT: otj→i
1 ← OT1

(
rj→i
ot

)
.

2. Round 2:

For the second round, Sim follows the honest strategy since the inputs of the honest parties
are not required up until the third round of the protocol. Compute the second round
message of all honest parties of the delayed semi-malicious Π:

– {msg2,i}Pi∈H ← S2

90

using the transcript obtained so far. Recall that this is done as just the honest execution of
the second round on behalf of the honest players Pi using the randomness sampled as a
part of the first round.

For each honest party Pi, Sim follows the honest party protocol in the second round of the
following protocols and sends the messages to A:

For every j ̸= i:

(e) Receiver message of TDGen: tdi→j
2 ← TDGen2.

(f) Verifier message of the three delayed-input WI argument systems

– WI: wij→i
2 ←WI2

– RWIa: rwij→i
a,2 ← RWI2

– RWIb: rwi
j→i
b,2 ← RWI2

(g) Receiver message of the three delayed-input commitment schemes

– Ecom: ecomj→i
2 ← Ecom2.

– RECom: recomj→i
2 ← RECom2.

– NMCom: ncomj→i
2 ← NMCom2.

(h) Sender message of OT: oti→j
2 ← OT2.

3. Round 3:

For the third round, Sim will set 0 to be the input each honest party.

For each honest party Pi, Sim follows the honest party protocol in the third round of the
following protocols, using input 0, and sends the messages to A:

(a) Compute the third round message of the delayed semi-malicious Π:

– msg3,i ← Π3 (0,)

using input 0, randomness ri and the transcript obtained so far. Recall that we are
able to do this since the “simulation” of the first two rounds of the underlying protocol
were honest computations.

(b) TDGen: td3,i ← TDGen3.

For every j ̸= i:

(c) NMCom: ncomi→j
3 ← NMCom3(̃rj) to commit to a random r̃j .

(d) RECom: recomi→j
3 ← RECom3(0, ri) to commit to (0, ri).

(e) RWI: rwii→j
a,3 ← RWI3

(
sti→j

a ,wi→j
a

)
to prove that Ra(st

i→j
a ,wi→j

a) = 1, where
Statement sti→j

a := (TΠ[2],T
i→•
recom[3], {msgℓ,i}ℓ∈[3],T

i→j
ncom[3], td1,j)

“Honest” witness wi→j
a := (0, ri, r

i→•
recom)

(f) Ecom: ecomi→j
3 ← Ecom3

(
rwii→•

a,3

)
to commit to rwii→•

a,3 .

91

(g) RWIb: rwi
i→j
b,3 ← RWI3(st

i→j
b ,wi→j

b) to prove that Rb(st
i→j
b ,wi→j

b) = 1, where

Statement sti→j
b := (Ti→•

rwia [2], st
i→•
a ,Ti→•

ecom[3],T
i→j
ncom[3], td1,j)

“Honest” witness wi→j
b := (ri→•

rwia ,w
i→•
a , rwii→•

a,3 , ri→•
ecom)

(h) OT: Receiver message otj→i
3 ← OT3(rwi

i→j
b,3) using input rwii→j

b,3 .

4. Check Abort Condition:

Sim now checks whether A explicitly aborted in the third round. This happens if A doesn’t
send its third round messages, or if every honest party aborts when the trapdoor condition
does not verify. Check if ∃Pj ∈ A, such that TDOut (td1,j , td2,j , td3,j) ̸= 1. If so, the Sim
outputs the partial view generated so far and stops. Otherwise, we say that “Check Abort”
succeeded and we proceed.

5. Check Implicit Abort:

We run a look ahead threads to extract from Ecom the RWI proofs for La from each mali-
cious party Pj . We then check if all the extracted RWI proofs verify. This ensures that on
the given thread, the malicious parties exhibit honest behavior. If for even a single mali-
cious party Pj the proofs don’t verify, then we take evasive action as mentioned in Step 1.5
below.

Remark 6. We use a specific property of Extecom, namely that since it’s input delayed, the commitment
in the first round is to a mask mask and the input delayed property is achieved by masking the input
with mask. In fact, mask is statistically determined by the first round of Ecom. Thus, to extract from
multiple instances of the input-delayed extractable commitment with a single shared first message that
potentially commit to different inputs, it suffices to extract mask in a single instance and using mask to
unmask, and thus retrieve, other inputs. Since the mask is extracted via decommittment information,
it’s easy to verify that the extracted value mask is indeed correct.

Step 1.5 - Evasive Action for Implicit Abort: We run this step only if there is an implicit abort.
Since we cannot do an explicit abort on behalf of the honest parties, we want to continue the main
thread from Step 1 but garble the C⊥ circuit14 in the fourth round, since we are sure that adversary
will not be able to evaluate the garbled circuit to produce any other output. But in order to do this,
we will need to extract the trapdoor to prove the WI statement for Lc claiming that the garbled
circuit was computed honestly. We can do this because the adversary did not cause an explicit
abort, and the extracted trapdoor can be publicly checked. But recall that this trapdoor must be
committed inside the ncom to use the “trapdoor witness” for Lc. To do so, we must re-sample the
main thread making a change only in the third round to commit to the trapdoor, while at the same
time ensuring that the resultant thread still causes an implicit abort. To do so, we follow a similar
analysis as that of [GK96a]. Since some of these steps are similar to the case where there are no
aborts, we defer the description to the relevant steps indicating whether we are in the case of an
implicit abort or no abort.

14Circuit that outputs ⊥ independent of input.

92

Step 2 - Rewinding: Since the adversary has not aborted explicitly, we will need to start simulation
the underlying protocol to produce an appropriate transcript. As the first step, the simulator will
rewind A.

1. Sim now rewinds A to the end of round 1 and freezes the main thread at this point. Then,
Sim creates a set of T (to be determined later) look-ahead threads, where on each thread,
only rounds 2 and 3 of the protocol are executed in the following manner:

(a) Round 2:
In every look-ahead thread, for each honest party Pi and for each j ̸= i, Sim executes
the same strategy as in round 2 of step 1, using fresh randomness each time(for each
primitive).

(b) Round 3:
In every look-ahead thread, for each honest party Pi and for each j ̸= i, Sim executes
the same strategy as in round 3 of step 1, using fresh randomness each time.

2. No abort case:

(a) For each look-ahead thread, define a thread to be GOOD with respect to Pi∗ if for all
malicious parties Pj:

– Pj does send its third round messages.
– TDOut (td1,j , td2,j , td3,j) = 1 where td2,j is as computed in round 3.
– The extracted RWI proofs for La are all accepting where Pj is the prover, and
Pi∗ is the verifier. We use mask obtained in Step 1 to do the extractions by simply
unmasking the commitment in Ecom.

(b) The number of threads T created is such that at least (12 · λ) GOOD threads exists.
That is, Sim keeps running till it obtains (12 · λ) GOOD threads.

3. Implicit abort case:

(a) For each look-ahead thread, define a thread to be IMPLICIT if

– every malicious party Pj does send its third round messages.
– for every malicious party Pj , TDOut (td1,j , td2,j , td3,j) = 1 where td2,j is as com-

puted in round 3.
– For some malicious party Pj , the extracted RWI proofs for La where Pj is the

prover are all accepting. We use mask obtained in Step 1 to do the extractions by
simply unmasking the commitment in Ecom.

(b) The number of threads TIMPLICIT created is such that at least (12 ·λ) IMPLICIT threads
exists. That is, Sim keeps running till it obtains (12 · λ) IMPLICIT threads.

Remark 7. We want to re-emphasize that only one of the two above cases are executed.

93

Step 3 - Input and Trapdoor Extraction: Now, Sim extracts all relevant information. Note that all
the relevant information can be extracted from sufficient number of GOOD threads with respect to
a single honest party for the case of no abort. For the case of implicit abort, we extract only the
trapdoor.

Sim does the following for the no abort case:

1. Select 5 threads that are GOOD with respect to some honest party Pi∗ . In each GOOD
thread, we know ∃ honest party Pi such that for all malicious parties Pj , the adversary
does not cause Pi to abort. Since (12 · λ) > (5 · n)a, there must exist one honest party Pi∗

corresponding to a set of 5 GOOD threads.

2. Trapdoor Extraction: For every corrupted party Pj , extract a trapdoor tj by running
the trapdoor extractor TDExt on input the transcript of the trapdoor generation protocol
with Pj playing the role of the trapdoor generator from any 3 GOOD threads. Specifically,
compute

tj ← TDExt
(
td1, {tdk2 , tdk3}k∈[3]

)

where
(
td1, td

k
2 , td

k
3

)
denotes the transcript of the trapdoor generation protocol with Pj as

the sender of the k-th GOOD thread.

3. Input Extraction: For every corrupted party Pj , extract the mask for the input and ran-
domness pair (xj , rj) by running the extractor ExtRECom on input the transcript of the
extractable commitment protocol between Pj and Pi∗ from the 5 GOOD threads picked
above. That is, compute

maskj→i∗ ← ExtRECom
(
recomj→i∗

1 , {recomj→i∗

2,k , recomj→i∗

3,k }k∈[5]

)

where recomj→i∗

1 , recomj→i∗

2,k , recomj→i∗

3,k denotes the transcript of the extractable commit-
ment protocol between Pj and Pi∗ on the k-th GOOD thread.

4. Proof Extraction: Since we’ve already extracted the proofs in Step 1, by Remark 6 we
can extract the proofs in each thread without having to rewind, by just unmasking with
the extracted mask from Step 1.

5. Output ⊥extract if any of steps 2 or 3 fail.

Sim does the following for the implicit abort case:

1. Trapdoor Extraction: For every corrupted party Pj , extract a trapdoor tj by running the
trapdoor extractor TDExt on input the transcript of the trapdoor generation protocol with
Pj playing the role of the trapdoor generator from any 3 IMPLICIT threads. Specifically,
compute

tj ← TDExt
(
td1, {tdk2 , tdk3}k∈[3]

)

where
(
td1, td

k
2 , td

k
3

)
denotes the transcript of the trapdoor generation protocol with Pj as

the sender of the k-th IMPLICIT thread.

94

2. Proof Extraction: Since we’ve already extracted the proofs in Step 1, by Remark 6 we can
extract the proofs in each thread without having to rewind, by just unmasking with the
extracted mask from Step 1.

3. Output ⊥extract if step 2 fails.

awithout loss of generality, assume the number of parties n = λ

Step 4 - Abort Probability Estimation: Sim estimate below the probability with which A either
does not abort, or implicitly aborts.

If Implicit abort case,
Set ε′ = 12·λ

TIMPLICIT
as the probability that the adversary implicitly abort.

If no abort case,
Set ε′ = 12·λ

T as the probability that the adversary doesn’t abort.

Step 5 - Re-sampling the Main Thread: Using the information extracted, Sim samples the main
thread. It also needs to force this transcript, and uses the estimate obtained earlier to upper bound
the number of attempts to do try this.

Sim sets a counter to value 0. Now Sim attempts to force the following transcript in the main
thread until it accepts, or the counter reaches the cut-off point.

1. Round 2 :

Run exactly as done in Step 1.

2. Round 3 :

There are some key differences from the threads generated in the previous steps:

– The non-malleable commitment from an honest party Pi to a malicious party Pj now
contains the extracted trapdoor tj .

– The witness indistinguishable proofs use the “trapdoor witness”.

– If implicit abort case: The third round of the MPC is generated by using inputs 0.

– If no abort case: The third round of the MPC is generated by the simulator for the
underlying protocol.

In more detail, Sim computes the third round of the delayed semi-malicious protocol Π for
all the honest parties:

– if implicit abort case, for each honest player Pi, msg3,i ← Π3 (0)

– if no abort case, {msg3,i}Pi∈H ← S3 using the transcript obtained so far.

For each honest party Pi, Sim computes the following, and sends the messages to A:

(a) TDGen: td3,i ← TDGen3.

For every j ̸= i:

95

(b) NMCom: ncomi→j
3 ← NMCom3(tj) to commit to extracted trapdoor tj .

(c) RECom: recomi→j
3 ← RECom3(0) to commit to 0.

(d) RWI: rwii→j
a,3 ← RWI3

(
sti→j

a ,wi→j
a

)
to prove that Ra(st

i→j
a ,wi→j

a) = 1, where
Statement sti→j

a := (TΠ[2],T
i→•
recom[3], {msgℓ,i}ℓ∈[3],T

i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
a :=

(
tj , r

i→j
ncom

)

(e) Ecom: ecomi→j
3 ← Ecom3

(
rwii→•

a,3

)
to commit to rwii→•

a,3 .

(f) RWIb: rwi
i→j
b,3 ← RWI3(st

i→j
b ,wi→j

b) to prove that Rb(st
i→j
b ,wi→j

b) = 1, where

Statement sti→j
b := (Ti→•

rwia [2], st
i→•
a ,Ti→•

ecom[3],T
i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
b :=

(
tj , r

i→j
ncom

)

(g) OT: Receiver message otj→i
3 ← OT3(rwi

i→j
b,3) using input rwii→j

b,3 .

3. Abort Condition:

(a) implicit abort case: if the adversary doesn’t send its third round message; or ∃Pj ∈
A, such that TDOut (td1,j , td2,j , td3,j) = 1 increment counter by 1.
no abort case: if the adversary doesn’t send its third round message; or ∃Pj ∈ A,
such that TDOut (td1,j , td2,j , td3,j) = 1 or the extracted proofs for La from Pj do not
accept, increment counter by 1.

(b) If Sim’s running time is 2λ. Abort.

(c) If the counter value was not increased, we can proceed to Step 7.

(d) Else, if the counter value is less that λ2

ε′ rewind back to the beginning of round 2
in Step 6 and re-sample the main thread with fresh randomness. Otherwise, Abort
indicating failure.

Step 6 - Query the Ideal Functionality: The following is done only in the no abort case.

1. Sim queries the ideal functionality with the set of values {xj} where xj is the input of
adversarial party Pj that was extracted in the previous step using mask obtained through
extraction by rewinding. This is done in this manner since the adversary may use a different
input in each thread, and we want to use the input it uses on the main thread. Since the
adversary commits to its input only on completion of the third round on the main thread.

2. Sim receives output y from the ideal functionality.

Step 7 - Extract proofs from OT: In order to determine whether we need to put in simulated
messages into garbled circuits in the fourth round, we extract from all OT receiver messages in
parallel by running sufficiently many look-ahead threads. Note that this is different from an implicit
abort since if there is no implicit abort, it is guaranteed that the adversary behaved honestly in the

96

underlying protocol. It is still possible that it doesn’t put the correct proof inside of the OT receiver
messages. We just need to ensure that the relevant garbled circuits then become “opaque”. Let us
denote this event as opaque, when there is at least one malicious party who’s extracted proof is not
accepting.

Step 8 - Finishing the Main Thread: Sim now finishes off the main thread by computing the last
round of the protocol.

1. Round 4:

If no abort case, compute the simulated fourth round message of the delayed semi-
malicious protocol Π: {msg4,i}Pi∈H ← S4

(
y, {xj , rj}Pj∈A

)
. Note that S4 will not be called

if there is an implicit or explicit abort.

For each honest party Pi, Sim computes the following, and sends the messages to A:

(a) Garbled Circuit taking into account the extracted RWI proof for Lb: Ci, where

– if implicit abort or opaque case, then
(
Ci, labi

)
← Garble (C⊥; rgc,i)

– else if no abort case, (Ci, labi)← Garble(C[msg4,i,T
•→i
rwib

[2], st•→i
b , r•→i

rwib
]; rgc,i)

For every j ̸= i:

(b) OT: Fourth round sender message oti→j
4 ← OT4

(
labi|j

)
using input labi|j .

(c) OT: Receiver randomness rj→i
ot .

(d) WI: wii→j
3 ←WI3

(
sti→j

c ,wi→j
c

)
, to prove that Rc(st

i→j
c ,wi→j

c) = 1, where
Statement sti→j

c := (TΠ[3],T
i→•
recom[3],T

•→i
rwib [2], st

•→i
b ,Ti→•

ot [4],Ci,T
i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
c :=

(
tj , r

i→j
ncom

)

2. Output Computation:

If no abort:

– For each honest party Pi, Sim does the following in the main thread,:

(a) If ∃j ̸= i, s.t. WI4(st
j→i
c ,Tj→i

wi [3]) ̸= 1, abort.

If there is no abort, instruct the ideal functionality to deliver output to the honest parties.

Remark 8. We note that if any round, a subprotocol outputs ⊥, Pi broadcast ⊥, sets output to be ⊥
and aborts. If Pi receives a ⊥ from another party, it sets its output to be ⊥ and aborts.

Running Time of the Simulator: The simulator runs in expected time polynomial in λ. The
analysis follows identically from that of [BGJ+18]. The only steps that the simulator can run in
exponential time are:

1. Step 2, where Sim rewinds till it gets 12 · λ implicitly-aborting/non-aborting transcripts. If ε
denotes the probability with which Sim goes into Step 2 (i.e. implicit abort or did not abort in

97

Step 1), then the expected total number of threads created are 12·λ
ε , where each thread takes

only poly(λ) time.

2. Step 5, where Sim resamples the main thread. If the probability estimate is correct, then it
is easy to see that this step requires the creation of at most λ2

ε threads. This step might take
time 2λ, but that only happens with probability 1

2λ
. See Section A.5 for further discussion.

This gives a total expected running time of

poly(λ) + poly(λ) · ε
(
12 · λ
ε

+

(
1− 1

2λ

)
λ2

ε
+ 2λ

(
1

2λ

))
≤ poly(λ)

4.5.2.1 Hybrids

Assume by contradiction that there is an adversary A that distinguishes the real and ideal worlds
with some non-negligible probability µ. µ will be used to set certain parameters in the hybrids.

HybREAL: Real World: The hybrid is the same as the real world execution. We consider a simulator
SimHyb that plays the role of the honest parties.

Hyb0: Determining Abort in the 3rd Round and Extraction: In this hybrid, SimHyb makes the
following changes:

1. SimHyb executes the first 3 rounds of the protocol using the honest parties’ strategy. If the
adversary causes an abort, SimHyb outputs only the view of the adversary and stops.

2. If the “Check Abort” step succeeds, SimHyb checks if there is an implicit abort by extracting the
RWI proofs.

3. If there is either an implicit abort or no abort, SimHyb rewinds back to after the completion of
round 1 of the protocol and freezes the main thread. SimHyb creates a set of 5·n·λ

µ look ahead
threads as described in Step 2 of Sim. Which is to say that in all the threads, SimHyb uses the
honest parties’ inputs and follows the protocol. The look ahead threads are identical to the
main thread.

4. If there is an implicit abort, the SimHyb now extracts the trapdoors and proofs from the created
look-ahead threads. Specifically, it runs the “Input and Trapdoor Extraction” phase described
in step 3 of the description of Sim using the first 3 look-ahead threads that are IMPLICIT.

5. If there is no abort, the SimHyb now extracts the input, trapdoors and proofs from the created
look-ahead threads. Specifically, it runs the “Input and Trapdoor Extraction” phase described
in step 3 of the description of Sim using the first 5 look-ahead threads that are GOOD with
respect to some honest party Pi∗ .

6. SimHyb outputs ⊥extract if either of the above two steps fails.

7. SimHyb continues the execution of the main thread it had previously frozen. It does this as in
the honest execution of HybREAL. If the adversary causes an abort, SimHyb rewinds to the end
of round 1 and re-samples the main thread honestly. This process is repeated at most λ

µ times.

Since µ is noticeable, we are guaranteed that SimHyb will run in polynomial in this hybrid, and
subsequent hybrids, when performing this check.

98

Hyb1: Using input 0 in the Aborting Step: In this hybrid, SimHyb does the “Check Abort” step using
the input 0 instead of the real honest party inputs. If the adversary does cause an abort, then SimHyb

just outputs the view of the adversary and stops. Else, it proceeds as in Hyb0. This is done using a
sequence of sub-hybrids. We only describe changes made in each sub-hybrid, with the remaining
execution identical to the previous hybrid.

Hyb1,0: Change OT receiver input to 0: In this sub-hybrid, SimHyb only modifies the third
round to replace the OT receiver input for all honest parties with 0. In Hyb0, the receiver
input to the OT was the third message of the RWI proof for Lb.

Hyb1,1: Change Ecom input to 0: In this sub-hybrid, SimHyb only modifies the third round
to replace the Ecom input for all honest parties with 0. In Hyb1,0, the input to Ecom was the
third message of the RWI proof for La.

Hyb1,2: Change RECom input to 0: In this sub-hybrid, SimHyb only modifies the third round
to replace the RECom input for all honest parties with (0, ri). In Hyb1,1, the input to Ecom for
an honest party Pi was its input and randomness (xi, ri) for the underlying protocol Π.

Hyb1,3: Change Π input to 0: In this sub-hybrid, SimHyb only modifies the third round to
replace the Π input for all honest parties with 0. In Hyb1,2, the input to Π for an honest party
Pi in the third round was xi.

Hyb1,4: Change Ecom input to RWI: In this sub-hybrid, SimHyb only modifies the third round
to replace the Ecom input for all honest parties with the correctly computed third message of
the RWI proof for La using input 0. In Hyb1,3, the input to Ecom was 0.

Hyb1,5: Change OT receiver input to RWI: In this sub-hybrid, SimHyb only modifies the third
round to replace the OT receiver input for all honest parties with the correctly computed third
message of the RWI proof for Lb using. In Hyb0, the receiver input to the OT was 0.

Note that Hyb1,5 ≡ Hyb1
Note that if the adversary aborts in the first three rounds, then we can skip the remaining

hybrids.

Hyb2: Using input 0 in the look-ahead threads: In this hybrid, SimHyb modifies each look-ahead
thread to follow the protocol but replacing the honest player inputs with 0. This is done in a
sequence of hybrids, where in each sequence we only modify a single look ahead thread. Since the
number of threads are T , we do the following:

∀k ∈ [T] the following changes are made only to the k-th thread:

Hyb2,k,0: Change NMCom on k-th thread: In this sub-hybrid, SimHyb only modifies the third
round of the k-th thread to commit in the NMCom to the trapdoor. In Hyb1, NMCom was a
commitment to a random value. Specifically, for every honest party Pi and every party Pj ,
SimHyb modifies the third round NMCom message to be ncomi→j

3 ← NMCom3(tj) where tj is
a valid trapdoor extracted from the other look-ahead threads as in Hyb1.

99

Hyb2,k,1: Switch RWI proofs for Lb on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to switch to the “trapdoor witness” in the RWI
proofs for Lb. Specifically, for every honest party Pi and every party Pj , SimHyb computes
rwii→j

b,3 ← RWI3(st
i→j
b ,wi→j

b), where

Statement sti→j
b := (Ti→•

rwia [2], st
i→•
a ,Ti→•

ecom[3],T
i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
b :=

(
tj , r

i→j
ncom

)

Hyb2,k,2: Switch RWI proofs for La on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to switch to the “trapdoor witness” in the RWI
proofs for La. Specifically, for every honest party Pi and every party Pj , SimHyb computes
rwii→j

a,3 ← RWI3
(
sti→j

a ,wi→j
a

)
, where

Statement sti→j
a := (TΠ[2],T

i→•
recom[3], {msgℓ,i}ℓ∈[3],T

i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
a :=

(
tj , r

i→j
ncom

)

Hyb2,k,3: Change RECom input to 0 on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to replace the RECom input for all honest parties
with (0, ri). In Hyb2,k,2, the input to Ecom for an honest party Pi was its input and randomness
(xi, ri) for the underlying protocol Π. This is done by a sequence of sub-hybrids given below.

Hyb2,k,3,0: Change Com sender’s message on main thread: In this hybrid, SimHyb

changes the Com commitment inside the RECom in the first round of the protocol.
Specifically, for every honest party Pi and malicious party Pj and for all ℓ ∈ [N], com-
pute recom1,ℓ ← Com(0). This is done since all the look ahead threads share the same
first round messages with the main thread.

Hyb2,k,3,1: Change polynomial in third round: In this hybrid, SimHyb picks a new
polynomial q to change the RECom third round messages. Specifically, for every honest
party Pi and malicious party Pj do the following:

– for every ℓ ∈ [N], pick a new degree 4 polynomial qℓ such that (xi ⊕ pℓ(0)) =
(0⊕ qℓ(0)).

– compute recom3,ℓ as (0⊕ qℓ(0), qℓ(zℓ)).

Hyb2,k,3,2: Commit to new polynomial: In this hybrid, SimHyb changes the Com com-
mitment inside the RECom in the first round of the protocol. Specifically, for every hon-
est party Pi and malicious party Pj and for all ℓ ∈ [N], compute recom1,ℓ ← Com(qℓ).

Note that Hyb2,k,3,2 ≡ Hyb2,k,3

Hyb2,k,4: Change Π input to 0 on the k-th thread: In this sub-hybrid, SimHyb only modifies
the third round of the k-th thread to replace the Π input for all honest parties with 0. In
Hyb2,3, the input to Π for an honest party Pi in the third round was xi.

Hyb2,k,5: Switch RWI proofs for La on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to switch back to the “honest witness” in the RWI

100

proofs for La. Specifically, for every honest party Pi and every party Pj , SimHyb computes
rwii→j

a,3 ← RWI3
(
sti→j

a ,wi→j
a

)
, where

Statement sti→j
a := (TΠ[2],T

i→•
recom[3], {msgℓ,i}ℓ∈[3],T

i→j
ncom[3], td1,j)

“Honest” witness wi→j
a := (0, ri, r

i→•
recom)

Hyb2,k,6: Switch RWI proofs for Lb on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to switch back to the “honest witness” in the RWI
proofs for Lb. Specifically, for every honest party Pi and every party Pj , SimHyb computes
rwii→j

b,3 ← RWI3(st
i→j
b ,wi→j

b) to prove that Rb(st
i→j
b ,wi→j

b) = 1, where

Statement sti→j
b := (Ti→•

rwia [2], st
i→•
a ,Ti→•

ecom[3],T
i→j
ncom[3], td1,j)

“Honest” witness wi→j
b := (ri→•

rwia ,w
i→•
a , rwii→•

a,3 , ri→•
ecom)

Hyb2,k,7: Change NMCom on k-th thread: In this sub-hybrid, SimHyb only modifies the third
round of the k-th thread to commit in the NMCom to a random value. Specifically, for every
honest party Pi and every party Pj , SimHyb modifies the third round NMCom message to be
ncomi→j

3 ← NMCom3 (̃rj) .
Note that Hyb2,T,7 ≡ Hyb2

Hyb3: Change NMCom on main thread: In this hybrid, SimHyb only modifies the third round of the
main thread to commit in the NMCom to the trapdoor. In Hyb2, NMCom was a commitment to a
random value. Specifically, for every honest party Pi and every party Pj , SimHyb modifies the third
round NMCom message to be ncomi→j

3 ← NMCom3 (tj) where tj is a valid trapdoor extracted from
the look-ahead threads as in Hyb2.

Hyb4: Switch RWI proofs for Lb on the main thread: In this hybrid, SimHyb only modifies the third
round of the main thread to switch to the “trapdoor witness” in the RWI proofs for Lb. Specifically,
for every honest party Pi and every party Pj , SimHyb computes rwii→j

b,3 ← RWI3(st
i→j
b ,wi→j

b), where

Statement sti→j
b := (Ti→•

rwia [2], st
i→•
a ,Ti→•

ecom[3],T
i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
b :=

(
tj , r

i→j
ncom

)

Hyb5: Switch RWI proofs for La on the main thread: In this hybrid, SimHyb only modifies the third
round of the main thread to switch to the “trapdoor witness” in the RWI proofs for La. Specifically,
for every honest party Pi and every party Pj , SimHyb computes rwii→j

a,3 ← RWI3
(
sti→j

a ,wi→j
a

)
, where

Statement sti→j
a := (TΠ[2],T

i→•
recom[3], {msgℓ,i}ℓ∈[3],T

i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
a :=

(
tj , r

i→j
ncom

)

Hyb6: Switch WI proofs for Lc on the main thread: In this hybrid, SimHyb only modifies the fourth
round of the main thread to switch to the “trapdoor witness” in the WI proofs for Lc. Specifically,

101

for every honest party Pi and every party Pj , SimHyb computes wii→j
3 ←WI3

(
sti→j

c ,wi→j
c

)
, to prove

that Rc(st
i→j
c ,wi→j

c) = 1, where

Statement sti→j
c := (TΠ[3],T

i→•
recom[3],T

•→i
rwib [2], st

•→i
b ,Ti→•

ot [4],Ci,T
i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
c :=

(
tj , r

i→j
ncom

)

Hyb7: Change RECom input to 0 on the main thread: In this hybrid, SimHyb only modifies the
third round of the main thread to replace the RECom input for all honest parties with 0. In Hyb6,
the input to RECom for an honest party Pi was its input and randomness (xi, ri) for the underlying
protocol Π.

Hyb8: Simulate Π on main thread: In this hybrid SimHyb only modifies the transcript of the
underlying protocol Π.

Specifically, if there is an implicit abort SimHyb does the following:
1. Compute the third round message of each honest party using input 0.
Else, if there is no abort SimHyb does the following:

1. Due to the fact that the first two simulated rounds of Π are honest computations, we do not
make any changes to the first two rounds but refer to the collective first round honest inputs
as the output of S1 with randomness rS := {ri}Pi∈H. Likewise for the second round messages.

2. Compute the third round messages of all honest parties in the delayed semi-malicious protocol
Π:
{msg3,i}Pi∈H ← S3 using the transcript obtained so far and randomness defined above.

3. Compute the third round messages of all honest parties in the underlying protocol Π:
{msg4,i}Pi∈H ← S4

(
y, {xj , rj}Pj /∈H

)
.

Hyb9: Extract Proofs from OT: In this hybrid SimHyb only creates sufficiently many look ahead
threads to extract the proofs for Lb that are used as receiver inputs to the OT. If there is proof from
a malicious party that does not accept, we denote this event as opaque.

Hyb10: Change GC on main thread: In this hybrid SimHyb only modifies the garbled circuits of
honest parties Pi if there is an implicit abort in Step 1. Specifically, if there is an implicit abort, the
garbled circuit for each honest party Pi is computed as:

(
Ci, labi

)
← Garble (C⊥)

where C⊥ is the circuit with the same topology as C but always outputs ⊥. We note that even in the
case of an implicit abort, we are able to extract the trapdoor, but not necessarily the witness.

For every honest party Pi,
– if implicit abort or opaque case, then

(
Ci, labi

)
← Garble (C⊥; rgc,i)

– else if no abort case, (Ci, labi)← Garble(C[msg4,i,T
•→i
rwib

[2], st•→i
b , r•→i

rwib
]; rgc,i)

Remark 9. We note that if there is an implicit abort, all honest parties will have a ⊥ encoded in the
circuit.

102

HybIDEAL: Run the actual probability estimation: In this hybrid, the number of look-ahead threads
is increased from 5·n·λ

µ to as many as needed to estimate the probability of the adversary not abort-
ing − ε′.

Additionally, at this point, SimHyb doesn’t re-sample the main thread λ
µ times. Instead, SimHyb

resamples the main thread for min
(
2λ, λ2

ε′

)
times as in the ideal world. This hybrid corresponds

exactly to the ideal world.

4.5.2.2 Indistinguishability of Hybrids

We will maintain the following invariant across the hybrids.

Definition 34 (Invariant). Consider any malicious party Pj and any honest party Pi. td1,i denotes the
first message of the trapdoor generation protocol with Pi as the trapdoor generator. Tj→i

ncom[3] denotes
the messages of the non-malleable commitment with Pj as the committer and Pi is the receiver.

This event E occurs if ∃i, j such that
– ExtNMCom outputs ti from the non-malleable commitment Tj→i

ncom[3] (AND)

– TDValid(td1,i, ti) = 1

That is, the event E occurs if the extractor for the non-malleable commitment outputs a valid trapdoor
ti (corresponding to the trapdoor generation protocol where Pi was the trapdoor generator) from the
non-malleable commitment from player Pj to Pi.

The invariant is
Pr

[
Event E occurs

]
≤ negl(λ)

Claim 5. Assuming the “1-rewinding security” of the trapdoor generation protocol TDGen and the
existence of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant
holds in HybREAL.

Proof. This is proven by contradiction. Assume that the invariant doesn’t hold in HybREAL. Then
there exists an adversary A such that for some honest party Pi∗ and malicious party Pj∗ , A causes
event E to occur with non-negligible probability. We will use this adversary to create an adversary
ATDGen that breaks the “1-rewinding security” of the trapdoor generation protocol TDGen with
non-negligible probability.

We now describe the working of ATDGen which interacts with the challenger CTDGen. ATDGen

picks randomly, an honest party Pi, and a random malicious party Pj . All messages other than the
trapdoor messages are computed in the same manner as SimHyb. The trapdoor messages for Pi are
exposed to the external challenger. Specifically, in round 1, set td1,i = td1 where td1 is received
from CTDGen. On receiving all the values td1→i

2 , · · · , tdn→i
2 , including the value tdj→i

2 from A in
round 2, ATDGen sets td2,i :=

(
td1→i

2 || · · · ||td1→i
2

)
and this is the value forwarded to CTDGen as the

second round response. Set td3,i = td3 where td3 is received from CTDGen, and compute the rest of
the third round messages for A. At this point, ATDGen rewinds A back to the beginning of round 2
to enable extraction from the NMCom. Specifically, ATDGen creates a look ahead thread that runs
only the second and third round. As in the main thread, the trapdoor messages are received from
CTDGen. Recall that the “1-rewinding” property of the trapdoor generation protocol allows for a
second td2 query to CTDGen.

Now ATDGen runs the extractor ExtNMCom of the non-malleable commitment scheme using the
message in both the threads that correspond to the non-malleable commitment from malicious

103

party Pj to honest party Pi. Let the output of ExtNMCom be t∗. ATDGen outputs t∗ as a valid trapdoor
to CTDGen.

By our assumption, the invariant doesn’t hold. Thus ExtNMCom, on adversary Pj∗ ’s commitment
to Pi, outputs a valid trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with
non-negligible probability ε. With probability at least 1

n2 , where n is the total number of players,
this corresponds to honest party Pi and malicious party Pj picked randomly by ATDGen. Therefore,
with non-negligible probability ε

n2 , ATDGen outputs t∗ as a valid trapdoor to CTDGen which breaks
the 1-rewinding security of the trapdoor generation protocol TDGen. Thus, it must be the case that
the invariant holds in HybREAL.

Remark 10. We note that if the invariant holds, it must be the case that no adversary can commit to a
valid trapdoor with a non-negligible probability. This in turn implies accepting witness indistinguish-
able proofs cannot use a “trapdoor witness” other than with negligible probability.

Claim 6. The invariant holds in Hyb0.

Proof. Since there is no difference in the main thread in the first 3 rounds between HybREAL and
Hyb0, the invariant continues to hold.

Claim 7. Hyb0 is indistinguishable from HybREAL except with probability at most µ
4 + negl(λ).

Proof. This is argued in two cases depending on the probability with which the adversary abort.

Case 1: Pr[not abort] ≥ µ
4 :

Suppose the adversary doesn’t cause an abort with probability greater that µ
4 . Let us analyze

the probability with which⊥extract is output by SimHyb. For simplicity, we present the argument
only for the case there is no abort. The argument for implicit abort is identical.

By the Chernoff bound, in Hyb0, except with negligible probability, in the set of 5·n·λ
µ

threads, there will be at least 5 GOOD threads with respect to some honest party Pi∗ . Now all
that’s left to argue is that ExtRECom and TDExt fail to extract with negligible probability.

From the definition of RECom, algorithm ExtRECom is successful except with negligible
probability if given as input

(
recom1, {recomk

2 , recom
k
3}k∈[5]

)
such that

(
recom1, recom

k
2 , recom

k
3

)

constitute “well-formed” and “admissible” rewinding secure extractable commitment mes-
sages. “Admissibility” follows trivially since SimHyb picks random challenges z for the ex-
tractable commitment. From the above claim, we’ve proved that the invariant holds in Hyb0,
and thus from the soundness of RWI and WI, in each GOOD thread with respect to some
honest party Pi∗ , the following holds: for every malicious Pj and every honest Pi, Tj→i

recom[3] is
a “well formed” transcript of RECom. Thus ExtRECom fails only with negligible probability.

From the definition of TDGen, algorithm TDExt is successful except with negligible prob-
ability if given as input

(
td1, {tdk2 , tdk3}k∈[3]

)
where td1 is the first message of the protocol

TDGen and tdk2 , td
k
3 denote the second and third round message of the k-th execution of

TDGen using the same first round message. Since there are 5 GOOD threads, we can extract
every malicious party’s trapdoor except with negligible probability.

Finally, from the Chernoff bound, in the set of λ
µ re-sampled main threads, there will

be at least one completed execution. Thus, the adversary’s view in HybREAL and Hyb0 is
indistinguishable.

Case 2: Pr[not abort] < µ
4 :

104

Suppose the adversary doesn’t cause an abort with probability smaller than µ
4 . Then, in

both hybrids, SimHyb aborts at the end of the “Check Abort” step except with probability µ
4 .

Thus, in this case, the adversary’s view in HybREAL and Hyb0 is indistinguishable except with
probability at most µ

4 + negl(λ).

Remark 11. To avoid cluttering of the proof, we will assume the argument that if both adjacent
hybrids have fewer than 5 GOOD (or 3 IMPLICIT) look-ahead threads with respect to all parties, the
two hybrids are identical.

Unless otherwise stated, we shall present the indistinguishability arguments for the no abort case
since this case requires additional steps. The implicit abort case arguments follow identically. We will
indicate and argue the two cases separately when they are different.

Claim 8. The invariant holds in Hyb1,0.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,0 and Hyb0,
the invariant continues to hold.

Claim 9. Assuming the hiding property of OT against malicious senders, Hyb1,0 is indistinguishable
from Hyb0.

Proof. The only difference between the two hybrids is when the “Check Abort” step doesn’t succeed.
In that case, in Hyb0, SimHyb uses as input to OT the third round message for the RWI proof for Lb,
while in Hyb1,0, SimHyb uses input 0 for the third round of OT. This is in fact done by a sequence
of hybrids, wherein only a single instance of the honest party’s input to the OT is changed. There
are < n2 instances where an honest party is the receiver, and thus at most n2 intermediate hybrids.
Suppose there is an adversary D that can distinguish between any two adjacent hybrids, we will
create an adversary AOT that breaks the hiding of the OT scheme. Recall that this is only in the
setting that “Check Abort” doesn’t succeed and hence the fourth round messages of the honest party
are not sent.

We now describe the working of AOT which interacts with the challenger COT. Let the change in
these adjacent hybrids be made for an honest party Pî to a party Pĵ . All messages other than those

of the chosen OT are computed as in the same manner as SimHyb. First, set otĵ→î
1 := ot1 where ot1

is sent by COT. On receiving/computing15 message otĵ→î
1 , send this along with (rwiî→ĵ

b,3 , 0) to COT.

Where rwiî→ĵ
b,3 is computed as in the previous hybrid by SimHyb. COT then chooses as input one of

the two values at random and sends ot3. AOT sets otĵ→î
3 := ot3. The view generated is then given

to the adversary D, wherein depending on the choice of COT, the view corresponds to one of the
two adjacent hybrids. The output from D is set to be the output of AOT.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability
ε. Therefore, with the same probability εAOT can break the hiding property of OT. Thus, it must be
the case that ε is negligible. Since there are at most n2 intermediate hybrids, the two end hybrids,
Hyb1,0 and Hyb0, remain indistinguishable except with negligible probability.

Claim 10. The invariant holds in Hyb1,1.
15Since the OT sender in question may in fact be an honest party.

105

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,1 and
Hyb1,0, the invariant continues to hold.

Claim 11. Assuming the hiding property of Ecom, Hyb1,1 is indistinguishable from Hyb1,0.

Proof. The proof works in the same way as the proof in the previous claim. The only difference
between the two hybrids is when the “Check Abort” step doesn’t succeed. In that case, in Hyb1,0,
SimHyb uses as input to Ecom the third round message for the RWI proof for La, while in Hyb1,1,
SimHyb uses input 0 for the third round of Ecom. This is in fact done by a sequence of hybrids,
wherein only a single instance of the honest party’s input to the Ecom is changed. There are
< n2 instances where an honest party is the committer, and thus at most n2 intermediate hybrids.
Suppose there is an adversary D that can distinguish between any two adjacent hybrids, we will
create an adversary AEcom that breaks the hiding of the Ecom scheme.

We now describe the working ofAEcom which interacts with the challenger CEcom. Let the change
in these adjacent hybrids be made for an honest party Pî to a party Pĵ . All messages other than those

of the chosen Ecom are computed as in the same manner as SimHyb. First, set ecomî→ĵ
1 := recom1

where ecom1 is sent by Crecom. On receiving/computing message ecomî→ĵ
1 , send this along with

(rwiî→ĵ
a,3 , 0) to CEcom. Where rwii→j

b,3 is computed as in the previous hybrid by SimHyb. CEcom then

commits to one of the two values at random and sends recom3. AEcom sets ecomî→ĵ
3 := ecom3. The

view generated is then given to the adversary D, wherein depending on the choice of CEcom, the
view corresponds to one of the two adjacent hybrids. The output from D is set to be the output of
AEcom.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability
ε. Therefore, with the same probability ε AEcom can break the hiding property of Ecom. Thus, it
must be the case that ε is negligible. Since there are at most n2 intermediate hybrids, the two end
hybrids, Hyb1,1 and Hyb1,0, remain indistinguishable except with negligible probability.

Claim 12. The invariant holds in Hyb1,2.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,2 and
Hyb1,1, the invariant continues to hold.

Claim 13. Assuming the hiding property of RECom, Hyb1,2 is indistinguishable from Hyb1,1.

Proof. The only difference between the two hybrids is when the “Check Abort” step doesn’t succeed.
In that case, in Hyb1,1, SimHyb uses as input to RECom (x̂i, r̂i), while in Hyb1,2, SimHyb uses input 0
for the third round of RECom. This is in fact done by a sequence of hybrids, wherein only a single
instance of the honest party’s input to the RECom is changed. There are < n2 instances where
an honest party is the committer, and thus at most n2 intermediate hybrids. Suppose there is an
adversary D that can distinguish between any two adjacent hybrids, we will create an adversary
ARECom that breaks the hiding of the RECom scheme.

We now describe the working of ARECom which interacts with the challenger CRECom. Let the
change in these adjacent hybrids be made for an honest party Pî to a party Pĵ . All messages
other than those of the chosen RECom are computed as in the same manner as SimHyb. First, set

recomî→ĵ
1 := recom1 where recom1 is sent by Crecom. On receiving/computing message recomî→ĵ

1 ,
send this along with

(
(x̂i, r̂i), 0

)
to CRECom. Where (x̂i, r̂i) is the input and randomness of Pî com-

puted as in the previous hybrid by SimHyb. CRECom then commits to one of the two values at random

106

and sends recom3. ARECom sets recomî→ĵ
3 := recom3. The view generated is then given to the ad-

versary D, wherein depending on the choice of CRECom, the view corresponds to one of the two
adjacent hybrids. The output from D is set to be the output of ARECom.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability
ε. Therefore, with the same probability ε, ARECom can break the hiding property of RECom. Thus, it
must be the case that ε is negligible. Since there are at most n2 intermediate hybrids, the two end
hybrids, Hyb1,2 and Hyb1,1, remain indistinguishable except with negligible probability.

Claim 14. The invariant holds in Hyb1,3.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,3 and
Hyb1,2, the invariant continues to hold.

Claim 15. Assuming the privacy of Π, Hyb1,3 is indistinguishable from Hyb1,2.

Proof. The only difference between the two hybrids is when the “Check Abort” step doesn’t succeed.
In that case, in Hyb1,2, SimHyb uses as input to the third round of Π 16 (xi, ri) for all honest parties
Pi, while in Hyb1,3, SimHyb uses as input to the third round of Π (0, r̂i) for all honest parties Pi. This
is in fact done by a sequence of hybrids, wherein only a single instance of the honest party’s input
to the Π is changed. There are < n parties, and thus at most n2 intermediate hybrids. Suppose
there is an adversary D that can distinguish between any two adjacent hybrids, we will create an
adversary AΠ that breaks the indistinguishability of Π.

We now describe the working of AΠ which interacts with the challenger CΠ. Let the change
in these adjacent hybrids be made for an honest party Pi. All messages other than those of the
chosen Π are computed as in the same manner as SimHyb. First, set msg1,i := msg1 where msg1 is
sent by Crecom. On receiving and computing message msg1,j for all other parties Pj , send this to
CΠ. Set msg2,i := msg2 where msg2 is sent by Crecom. On receiving and computing message msg2,j
for all other parties Pj , send this to CΠ along with ((xi, ri), (0, ri)). Where (xi, ri) is the input and
randomness of Pi computed as in the previous hybrid by SimHyb. CΠ then uses one of the two
values at random and sends msg3. AΠ sets msg3,i := msg3. The view generated is then given to
the adversary D, wherein depending on the choice of CΠ, the view corresponds to one of the two
adjacent hybrids. The output from D is set to be the output of AΠ.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability
ε. Therefore, with the same probability ε AΠ can break the input indistinguishability property of Π.
Thus, it must be the case that ε is negligible. Since there are at most n intermediate hybrids, the
two end hybrids, Hyb1,3 and Hyb1,2, remain indistinguishable except with negligible probability.

Claim 16. The invariant holds in Hyb1,4.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,4 and
Hyb1,3, the invariant continues to hold.

Claim 17. Assuming the hiding property of Ecom, Hyb1,4 is indistinguishable from Hyb1,3.

Proof. This proof follows identically as in Claim 11.

Claim 18. The invariant holds in Hyb1,5.
16This is the first round of Π that uses the input.

107

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,5 and
Hyb1,4, the invariant continues to hold.

Claim 19. Assuming the hiding property of OT against malicious senders, Hyb1,5 is indistinguishable
from Hyb1,4.

Proof. This proof follows identically as in Claim 9.

Note that Hyb1,5 ≡ Hyb1. This gives us that Hyb1 and Hyb0 are indistinguishable other than with
negligible probability.

We now prove claims for all k ∈ [T], where we set Hyb2,0,7 ≡ Hyb1
We note that we will argue that the invariant holds even in the look ahead thread that we are

making changes in. Initially, since all the look ahead threads are identical to the main thread, by
claim 5 we know that the invariant holds in each of them. The invariant is useful since we will
argue that if the invariant holds true, the probability of the extracted RWI accepting cannot change
with noticeable probability. From the soundness of RWI we are guarantees that, with the change,
we are still successfully extracting from the adversary with the same probability.

Claim 20. Assuming NMCom is a secure non-malleable commitment scheme with non-malleability
with respect to extraction, the invariant holds in Hyb2,k,0.

Proof. We know that the invariant holds Hyb2,k−1,7. The only difference between Hyb2,k−1,7 and
Hyb2,k,0 is that the simulator commits to the trapdoor in the k-th look ahead thread. Assume, for
the sake of contradiction, that the invariant doesn’t hold in Hyb2,k,0. Then there exists an adversary
A such that for some honest party Pi∗ and malicious party Pj∗ , A causes event E to occur with
non-negligible probability. We will use this adversary to create an adversary ANMCom that breaks
the security of the non-malleable commitment scheme NMCom with non-negligible probability.
Specifically, we will break the property of non-malleability with respect to extraction.

We now describe the working of ANMCom which interacts with the challenger CNMCom. ANMCom

picks randomly an honest party Pi and a random malicious party Pj . All messages other than the
chosen NMCom messages are computed in the same manner as SimHyb. The NMCom messages
from Pi to Pj are exposed to the external challenger. Specifically, in round 1, set ncomi→j

1 := ncomL
1

where ncomL
1 is received from CNMCom for the left execution. On receiving ncomj→i

1 fromA, ANMCom

forwards this to CNMCom as its first round message on the right hand side.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of the

protocol alone. In each look-ahead thread, ANMCom computes ncomi→j
3 as a commitment to ⊥.

From the definition of the NMCom scheme, from the pseudorandomness property, ANMCom can do
this even without knowing the randomness used to generate ncomi→j

1 .17 These 5 threads are all
GOOD with respect to some party H with noticeable probability. With the 5 threads, ANMCom can
successfully run the input and trapdoor extraction phase.

On the k-th thread ANMCom receives ncomR
2 from CNMCom as the second round message on the

right side which it sets as the value ncomj→i
2 . On receiving ncomi→j

2 in the k-th thread, ANMCom

sends this to CNMCom as its second round message on the left side along with the pair of values
(̃r, tj) where tj was obtained during the extraction phase, and r̃ is a random value.

17While in the real execution, these are to random value (instead of ⊥) by the hiding property these are indistinguishable.

108

ANMCom receives a third round message ncomL
3 which is either a commitment to ⊥ or tj . This is

sent to A as the value ncomi→j
3 in the k-th thread.

We note that ANMCom acts as an interface for the ExtNMCom, rewinding A as necessary.
By our assumption, the invariant doesn’t hold. Thus ExtNMCom, on adversary Pj∗ ’s commitment

to Pi, outputs a valid trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗

with non-negligible probability ε. With probability at least 1
n2 , where n is the total number of

players, this corresponds to honest party Pi and malicious party Pj picked randomly by ANMCom.
Therefore, with non-negligible probability ε

n2 , ExtNMCom outputs t∗ as a valid trapdoor. Since the
invariant holds in Hyb2,k−1,7, if ExtNMCom outputs t∗, it must be the case that we are in Hyb2,k,0 with
non-negligible probability. That is, when ExtNMCom outputs a valid trapdoor, it must correspond to
ANMCom receiving a commitment to 0. This breaks the security of NMCom, which is a contradiction.
Thus the invariant must also hold for Hyb2,k,0.

Claim 21. Assuming hiding of NMCom, Hyb2,k−1,7 is indistinguishable from Hyb2,k,0

Proof. Since we are only making changes in a look-ahead thread, all we need to do is argue that the
extraction continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one
hybrid but not the other. The only difference between Hyb2,k−1,7 and Hyb2,k,0 is that the simulator
commits to the trapdoor in the k-th look ahead thread.

Since we have already established that the invariant holds in each look-ahead thread indepen-
dently, we want to use the fact that the probability that the RWI proof for La is accepting cannot
change with non-negligible probability if the invariant is true. If this were the case, the probability
SimHyb outputs ⊥extract will not change in the extraction phase of the two hybrids, since La proves
honest behavior of the first 3 rounds of the protocol.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A such
that for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La in Ecom such
that the probability of accept in the two cases differs by a non-negligible probability. We will use this
adversary to create an adversary ANMCom that breaks the hiding of the non-malleable commitment
scheme NMCom with non-negligible probability.

We now describe the working of ANMCom which interacts with the challenger CNMCom. ANMCom

picks randomly an honest party Pi and a random malicious party Pj . All messages other than the
chosen NMCom messages are computed in the same manner as SimHyb. The NMCom messages
from Pi to Pj are exposed to the external challenger. Specifically, in round 1, set ncomi→j

1 := ncom1

where ncom1 is received from CNMCom.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of the

protocol alone. In each look-ahead thread,ANMCom computes ncomi→j
3 as a commitment to⊥. From

the definition of the NMCom scheme, ANMCom can do this even without knowing the randomness
used to generate ncomi→j

1 . These 5 threads are all GOOD with respect to some party H with
noticeable probability. With the 5 threads, ANMCom can successfully run the input and trapdoor
extraction phase.

On receiving ncomi→j
1 , ANMCom forwards it to CNMCom along with pair of values (̃r, tj) where tj

was obtained during the extraction phase, and r̃ is a random value.
ANMCom receives a third round message ncomL

3 which is either a commitment to r̃ or tj . This
is sent to A as the value ncomi→j

3 on the k-th thread. On receiving the third round messages

109

from A, from 2 GOOD look ahead threads with respect to Pi, extract rwij→i
a,3 from Ecom18. From

the definition of Ecom, the extracted value can be verified to be correctly extracted. ANMCom now
checks if

RWI4
(
stj→i

a ,Tj→i
rwia

[3]; rj→i
rwi,a

)
= 1.

If so, it guesses that the commitment was to r̃. Otherwise, it guesses that the commitment was to
tj . Let us define Trap as the event that the commitment was to the trapdoor and Trap as the even
that the commitment was to ⊥. From the challenge game, we know Pr[Trap] = Pr

[
Trap

]
= 1

2

Pr[guess correct] = Pr
[
guess correct

∣∣∣ Trap
]
· Pr[Trap] + Pr

[
guess correct

∣∣∣ Trap
]
· Pr

[
Trap

]

= Pr
[
guess correct

∣∣∣ Trap
]
· 1
2
+ Pr

[
guess correct

∣∣∣ Trap
]
· 1
2

=
1

2
·
(
Pr

[
RWI proof accepts

∣∣∣ Trap
]
+ Pr

[
RWI proof rejects

∣∣∣ Trap
])

=
1

2
·
(
Pr

[
RWI proof accepts

∣∣∣ Trap
]
+ 1− Pr

[
RWI proof accepts

∣∣∣ Trap
])

=
1

2
+

1

2
·
(
Pr

[
RWI proof accepts

∣∣∣ Trap
]
− Pr

[
RWI proof accepts

∣∣∣ Trap
])

By our assumption, the adversary Pj∗ ’s acceptance probability of the RWI proof for La to Pi∗

differs non-negligible probability ε. With probability at least 1
n2 , where n is the total number of

players, this corresponds to honest party Pi and malicious party Pj picked randomly by ANMCom.
Therefore, Pj ’s acceptance probability of the RWI proof for La to Pi differs non-negligible probabil-
ity ε

n2 . Now, the extractor ExtEcom is successful with some non-negligible probability ε′. Therefore,
with non-negligible advantage ε·ε′

2·n2 , ANMCom wins the challenge game with CNMCom which breaks
the hiding property of NMCom. Thus, ε must be negligible, and thus the views are indistinguish-
able.

Claim 22. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence of
an extractor ExtNMCom, the invariant holds in Hyb2,k,1.

Proof. We know that the invariant holds Hyb2,k,0. The only difference between Hyb2,k,0 and Hyb2,k,1
is that the simulator switches the witness in the RWI for Lb. Assume, for the sake of contradiction,
that the invariant doesn’t hold in Hyb2,k,1. Then there exists an adversary A such that for some
honest party Pi∗ and malicious party Pj∗ , A causes event E to occur with non-negligible probability.
We will use this adversary to create an adversary ARWI that breaks the bounded rewinding security
of RWI with non-negligible probability.

We now describe the working of ARWI which interacts with the challenger CRWI. ARWI picks
randomly an honest party Pi and a random malicious party Pj . All messages other than the chosen
RWI messages are computed in the same manner as SimHyb. The RWI messages from Pi to Pj are
exposed to the external challenger. Specifically, in round 1, set rwii→j

b,1 := rwi1 where rwi1 is received
from CRWI.

After receiving rwii→j
b,2 from A, ARWI creates a set of 5 look-ahead threads, in each of which, it

runs rounds 2 and 3 of the protocol alone. In each look-ahead thread, ARWI on receiving rwii→j
b,1

18The extraction in fact does not require further rewinds since mask already extracted in the “Check Abort” phase. But for
simplicity, we ignore this point for now.

110

forwards it to CRWI as its second round message. For each thread, ARWI also sends the statement

sti→j
b := (Ti→•

rwia [2], st
i→•
a ,Ti→•

ecom[3],T
i→j
ncom[3], td1,j)

where the other values are generated as in Hyb2,k,0.
In the main thread,ARWI also sends the pair of witnesses (ri→•

rwia
,wi→•

a , rwii→•
a,3 , ri→•

ecom) and
(
tj , r

i→j
ncom

)

where tj is obtained in the input extraction phase, and wi→k
a is computed as defined. For each

thread, ARWI receives rwi3 which is set as rwii→j
b,3 .

Recall that RWI is secure even in the presence of 6 total threads. Now ARWI runs the extractor
ExtNMCom of the non-malleable commitment scheme using the message in both the threads that
correspond to the non-malleable commitment from malicious party Pj to honest party Pi. Let the
output of ExtNMCom be t∗. ARWI checks if TDValid(t∗, td1,i) = 1. If so, it outputs 1 to indicate
Hyb2,k,1 and 0 otherwise. Let us denote this output by b̃, and let the challenge bit be b. Then,

Pr
[
b̃ = b

]
= Pr

[
b̃ = 0

∣∣∣ b = 0
]
· Pr[b = 0] + Pr

[
b̃ = 1

∣∣∣ b = 1
]
· Pr[b = 1]

= Pr
[
b̃ = 0

∣∣∣ b = 0
]
· 1
2
+ Pr

[
b̃ = 1

∣∣∣ b = 1
]
· 1
2

=
1

2
·
(
1− Pr

[
b̃ = 1

∣∣∣ b = 0
]
+ Pr

[
b̃ = 1

∣∣∣ b = 1
])

=
1

2
+

1

2
·
(
Pr

[
b̃ = 1

∣∣∣ b = 1
]
− Pr

[
b̃ = 1

∣∣∣ b = 0
])

=
1

2
+

1

2
·
(
Pr

[
EXT

∣∣∣ b = 1
]
− Pr

[
EXT

∣∣∣ b = 0
])

where EXT denotes the even that the extractor outputs a valid trapdoor. By our assumption, the in-
variant doesn’t hold. Thus ExtNMCom, on adversary Pj∗ ’s commitment to Pi, outputs a valid trapdoor
ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible probability ε.
With probability at least 1

n2 , where n is the total number of players, this corresponds to honest
party Pi and malicious party Pj picked randomly by ARWI. Therefore, with non-negligible proba-
bility ε

n2 , ExtNMCom outputs t∗ as a valid trapdoor. Since the invariant holds in Hyb2,k,0, if ExtNMCom

outputs t∗, it must be the case that we are in Hyb2,k,1 with non-negligible probability. That is, when
ExtNMCom outputs a valid trapdoor, it must correspond to ARWI receiving a proof using the trapdoor
witness. This breaks the security of RWI, which is a contradiction. Thus the invariant must also
hold for Hyb2,k,1.

Claim 23. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,0 is indistin-
guishable from Hyb2,k,1

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the
extraction continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one
hybrid and not the other. The only difference between Hyb2,k,0 and Hyb2,k,1 is that the simulator
switches the witness in the RWI for Lb.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A
such that for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for Lb in Ecom
such that the probability of accept in the two cases in non-negligible. We will use this adversary to
create an adversary ARWI that breaks the bounded rewinding security of RWI with non-negligible
probability.

111

The proof is similar to that of Claim 21 and Claim 22. We note that we use the fact that RWI is
secure even in the presence of the 2 total threads used for extracting from Ecom.

Claim 24. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence of
an extractor ExtNMCom, the invariant holds in Hyb2,k,2.

Proof. We know that the invariant holds Hyb2,k,1. The only difference between Hyb2,k,1 and Hyb2,k,2
is that the simulator switches the witness in the RWI for La. Assume, for the sake of contradiction,
that the invariant doesn’t hold in Hyb2,k,2. Then there exists an adversary A such that for some
honest party Pi∗ and malicious party Pj∗ , A causes event E to occur with non-negligible probability.
We will use this adversary to create an adversary ARWI that breaks the bounded rewinding security
of RWI with non-negligible probability. The rest of the proof is similar to that of Claim 22.

Claim 25. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,1 is indistin-
guishable from Hyb2,k,2

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the
extraction continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one
hybrid and not the other. The only difference between Hyb2,k,1 and Hyb2,k,2 is that the simulator
switches the witness in the RWI for La.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A such
that for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La in Ecom
such that the probability of accept in the two cases in non-negligible. We will use this adversary to
create an adversary ARWI that breaks the bounded rewinding security of RWI with non-negligible
probability.

The proof is similar to that of Claim 21 and Claim 22.

Claim 26. Assuming that Com is a secure commitment scheme, and the existence of an extractor
ExtNMCom, the invariant holds in Hyb2,k,3.

Proof. We prove this by a sequence of sub-claims.

Sub-Claim 27. Assuming that Com is a secure commitment scheme, and the existence of an
extractor ExtNMCom, the invariant holds in Hyb2,k,3,0.

Proof. We know that the invariant holds Hyb2,k,2. The only difference between Hyb2,k,2 and
Hyb2,k,3,0 is that the simulator switches the commitment in Com from polynomials p to 0. This
is in fact done by a sequence of hybrids where only a single Com is changed at a time. For
simplicity, we proceed with the assumption that in this hybrid, only a single commitment was
changed. Assume, for the sake of contradiction, that the invariant doesn’t hold in Hyb2,k,3.
Then there exists an adversary A such that for some honest party Pi∗ and malicious party Pj∗ ,
A causes event E to occur with non-negligible probability. We will use this adversary to create
an adversary ACom that breaks the hiding property of Com with non-negligible probability.

We now describe the working of ACom which interacts with the challenger CEcom. ACom

picks randomly an honest party Pi and a random malicious party Pj . All messages other than
the chosen Com messages are computed in the same manner as SimHyb. The Com messages
from Pi to Pj are exposed to the external challenger. Specifically, ACom sends two challenges

112

(pℓ, 0) to C. And sets recomi→j
1,ℓ := Com where Com is received from CCom. Depending on the

challenge used by CCom, we are either in Hyb2,k,2 or Hyb2,k,3,0.
ACom creates sufficiently many look ahead threads where it runs rounds 2 and 3 of the

protocol alone. Now ACom runs the extractor ExtNMCom of the non-malleable commitment
scheme using the message in both the threads that correspond to the non-malleable commit-
ment from malicious party Pj to honest party Pi. Let the output of ExtNMCom be t∗. ACom

checks if TDValid(t∗, td1,i) = 1. If so, it outputs 1 to indicate Hyb2,k,3 and 0 otherwise.
By our assumption, the invariant doesn’t hold. Thus ExtNMCom, on adversary Pj∗ ’s commit-

ment to Pi, outputs a valid trapdoor ti∗ for the trapdoor generation messages of the honest
party Pi∗ with non-negligible probability ε. With probability at least 1

n2 , where n is the total
number of players, this corresponds to honest party Pi and malicious party Pj picked ran-
domly by ACom. Therefore, with non-negligible probability ε

n2 , ExtNMCom outputs t∗ as a valid
trapdoor. Since the invariant holds in Hyb2,k,2, if ExtNMCom outputs t∗, it must be the case that
we’re in Hyb2,k,3 with non-negligible probability. That is, when ExtNMCom outputs a valid trap-
door, it must correspond to ACom receiving input 0. This breaks the security of Com, which is
a contradiction. Thus the invariant must also hold for Hyb2,k,3.

Sub-Claim 28. The invariant holds in Hyb2,k,3,1.

Proof. The change from is statistical Hyb2,k,3,0 when there are fewer than Brecom rewinds when
extracting from the NMCom. This follows from the fact that the degree of the polynomial is
set to be Brecom, and thus statistically undetermined by the number of rewinds ≤ Brecom. By
our setting of parameters, we know that number of rewinds ≤ Brecom. Thus The invariant
holds in Hyb2,k,3,1.

Sub-Claim 29. Assuming that Com is a secure commitment scheme, and the existence of an
extractor ExtNMCom, the invariant holds in Hyb2,k,3,2.

Proof. The proof follows identically as in Sub-Claim 27.

Thus we have that the invariant holds for Hyb2,k,3.

Claim 30. Assuming that Com is a secure commitment scheme, Hyb2,k,2 is indistinguishable from
Hyb2,k,3

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the
extraction continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one
hybrid and not the other. The only difference between Hyb2,k,2 and Hyb2,k,3 is that the simulator
switches commitment in RECom to 0.

The proof is similar to that of Claim 21 and Claim 26.

Claim 31. Assuming that Π is a rewinding secure protocol for the first three rounds, and the existence
of an extractor ExtNMCom, the invariant holds in Hyb2,k,4.

Proof. We know that the invariant holds Hyb2,k,3. The only difference between Hyb2,k,3 and Hyb2,k,4
is that the simulator switches the input in Π from (x, r) to 0 for each honest party Pî. This is in
fact done by a sequence of hybrids where only a single party’s input is changed at a time. For

113

simplicity, we proceed with the assumption that in this hybrid, only a single party’s input was
changed. Assume, for the sake of contradiction, that the invariant doesn’t hold in Hyb2,k,4. Then
there exists an adversary A such that for some honest party Pi∗ and malicious party Pj∗ , A causes
event E to occur with non-negligible probability. We will use this adversary to create an adversary
AΠ that breaks the bounded rewinding security of the first three round of Π with non-negligible
probability.

We now describe the working of AΠ which interacts with the challenger CΠ. AΠ picks randomly
an honest party Pi and a random malicious party Pj . All messages other than the chosen Π messages
for Pî are computed in the same manner as SimHyb. The Π messages for Pî are exposed to the
external challenger. Specifically, in round 1, set msg1,̂i := msg1 where msg1 is received from CΠ.

After generating/receiving TΠ[1] from A, AΠ creates a set of 5 look-ahead threads, in each of
which, it runs rounds 2 and 3 of the protocol alone. In each look-ahead thread, AΠ on computing
TΠ[2] forwards it to CΠ.

In the main thread (k-th look-ahead thread), AΠ also sends the pair of inputs (xi, ri) and 0. For
the look-ahead threads for extraction,AΠ sends the input (xi, ri). For each thread,AΠ receives msg3
which is set as msg3,̂i. Depending on the input used by CΠ, we are either in Hyb2,k,3 or Hyb2,k,4.

Recall that Π is secure even in the presence of 3 total threads. Now AΠ runs the extractor
ExtNMCom of the non-malleable commitment scheme using the message in both the threads that
correspond to the non-malleable commitment from malicious party Pj to honest party Pi. Let the
output of ExtNMCom be t∗. AΠ checks if TDValid(t∗, td1,i) = 1. If so, it outputs 1 to indicate Hyb2,k,4
and 0 otherwise.

By our assumption, the invariant doesn’t hold. Thus ExtNMCom, on adversary Pj∗ ’s commitment
to Pi, outputs a valid trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with
non-negligible probability ε. With probability at least 1

n2 , where n is the total number of players,
this corresponds to honest party Pi and malicious party Pj picked randomly by AΠ. Therefore, with
non-negligible probability ε

n2 , ExtNMCom outputs t∗ as a valid trapdoor. Since the invariant holds
in Hyb2,k,3, if ExtNMCom outputs t∗, it must be the case that we’re in Hyb2,k,4 with non-negligible
probability. That is, when ExtNMCom outputs a valid trapdoor, it must correspond toAΠ receiving the
messages using input 0. This breaks the security of Π, which is a contradiction. Thus the invariant
must also hold for Hyb2,k,4.

Claim 32. Assuming that Π is a rewinding secure protocol for the first three rounds, Hyb2,k,3 is indis-
tinguishable from Hyb2,k,4

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the
extraction continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one
hybrid and not the other. The only difference between Hyb2,k,3 and Hyb2,k,4 is that the simulator
switches input to 0.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A such
that for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La in Ecom such
that the probability of accept in the two cases in non-negligible. We will use this adversary to create
an adversary AΠ that breaks the bounded rewinding security of Π with non-negligible probability.

The proof is similar to that of Claim 21 and Claim 31.

Claim 33. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence of
an extractor ExtNMCom, the invariant holds in Hyb2,k,5.

114

Proof. Proof is identical to that of Claim 24.

Claim 34. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,4 is indistin-
guishable from Hyb2,k,5

Proof. Proof is identical to that of Claim 25.

Claim 35. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence of
an extractor ExtNMCom, the invariant holds in Hyb2,k,6.

Proof. Proof is identical to that of Claim 22.

Claim 36. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,5 is indistin-
guishable from Hyb2,k,6

Proof. Proof is identical to that of Claim 23.

Claim 37. Assuming NMCom is a secure non-malleable commitment scheme with respect to extraction,
the invariant holds in Hyb2,k,7.

Proof. Proof is identical to that of Claim 20.

Claim 38. Assuming NMCom is a secure non-malleable commitment scheme, Hyb2,k,6 is indistinguish-
able from Hyb2,k,7

Proof. Proof is identical to that of Claim 21.

Claim 39. Assuming NMCom is a secure non-malleable commitment scheme with respect to extraction,
the invariant holds in Hyb3.

Proof. Proof is identical to that of Claim 20.

Claim 40. Assuming NMCom is a secure non-malleable commitment scheme, Hyb3 is indistinguishable
from Hyb2

Proof. The only difference between Hyb3 and Hyb2 is that the simulator commits to the trapdoor in
the main look ahead thread.

Assume, for the sake of contradiction, that that the views are distinguishable. Then there exists
an adversary D such that D can distinguish between Hyb3 and Hyb2 with non-negligible advan-
tage. We will use this adversary to create an adversary ANMCom that breaks the hiding of the
non-malleable commitment scheme NMCom with non-negligible probability.

We now describe the working of ANMCom which interacts with the challenger CNMCom. ANMCom

picks randomly an honest party Pi and a random malicious party Pj . All messages other than the
chosen NMCom messages are computed in the same manner as SimHyb. The NMCom messages
from Pi to Pj are exposed to the external challenger. Specifically, in round 1, set ncomi→j

1 := ncom1

where ncom1 is received from CNMCom.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of the

protocol alone. In each look-ahead thread,ANMCom computes ncomi→j
3 as a commitment to⊥. From

the definition of the NMCom scheme, ANMCom can do this even without knowing the randomness
used to generate ncomi→j

1 . These 5 threads are all GOOD with respect to some party H with

115

noticeable probability. With the 5 threads, ANMCom can successfully run the input and trapdoor
extraction phase.

On receiving ncomi→j
1 , ANMCom forwards it to CNMCom along with pair of values (̃r, tj) where tj

was obtained during the extraction phase, and r̃ is a random value.
ANMCom receives a third round message ncomL

3 which is either a commitment to ⊥ or tj . This is
sent to A as the value ncomi→j

3 on the main thread. The rest of the messages are obtained in the
same manner as SimHyb. Depending on which value was committed we are either in Hyb3 or Hyb2.
On completion of the execution, the view is input to D and the output returned is the output of
ANMCom

By our assumption, D can distinguish between the two hybrids with noticeable probability ε.
Therefore, with non-negligible advantage ε

n2 , ANMCom wins the challenge game with CNMCom which
breaks the hiding property of NMCom. Thus, ε must be negligible, and thus the views are indistin-
guishable.

Claim 41. Assuming the bounded rewinding witness indistinguishability RWI, the invariant holds in
Hyb4.

Proof. Proof is identical to that of Claim 22.

Claim 42. Assuming the bounded rewinding witness indistinguishability RWI, Hyb4 is indistinguish-
able from Hyb3

Proof. The only difference between Hyb4 and Hyb3 is that the simulator switches the witness in the
RWI for Lb.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary D can
distinguish between Hyb4 and Hyb3 with non-negligible advantage. We will use this adversary to
create an adversary ARWI that breaks the bounded rewinding security of RWI with non-negligible
probability.

The proof is similar to that of Claim 40 and Claim 41.

Claim 43. Assuming the bounded rewinding witness indistinguishability RWI, the invariant holds in
Hyb5.

Proof. Proof is identical to that of Claim 24.

Claim 44. Assuming the bounded rewinding witness indistinguishability RWI, Hyb5 is indistinguish-
able from Hyb4

Proof. The only difference between Hyb5 and Hyb4 is that the simulator switches the witness in the
RWI for La.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary D can
distinguish between Hyb5 and Hyb4 with non-negligible advantage. We will use this adversary to
create an adversary ARWI that breaks the bounded rewinding security of RWI with non-negligible
probability.

The proof is similar to that of Claim 40 and Claim 41.

Claim 45. The invariant holds in Hyb6.

Proof. The claim is trivially true since the change is made only in the fourth round.

116

Claim 46. Assuming the witness indistinguishability WI, Hyb6 is indistinguishable from Hyb5

Proof. The only difference between Hyb6 and Hyb5 is that the simulator switches the witness in the
WI for Lc.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary D
can distinguish between Hyb6 and Hyb5 with non-negligible advantage. We will use this adversary
to create an adversary AWI that breaks the witness indistinguishability of WI with non-negligible
probability.

The proof is similar to that of Claim 40 and Claim 41. We point out that since only the second
round of WI overlaps with the rewinding rounds, we don’t need the external challenger to handle
rewinds since the responses on the look-ahead threads, that are run only till the end of third round,
are discarded.

Claim 47. Assuming the rewinding security of RECom, Hyb7 is indistinguishable from Hyb6

Proof. This is proved via a sequence of hybrids given below.
This is done by a sequence of hybrids mentioned below. We note that we separate the look-

ahead threads into two separate types: (i) to extract trapdoor, (ii) to extract input. In our hybrids,
we shall only make changes to type (ii) threads.

Roughly, we first argue that if we switch to committing to “junk” in the RECom in any thread,
the invariant continues to hold in that thread. For this, we will rely on the bounded rewind security
of RECom. This ensures that on such threads, the adversary’s input does not also switch to “junk”
on these threads. We then use these threads as look-ahead threads to extract the adversary’s inputs.
These threads can be completed without having to forward messages to an external challenger since
we can respond to committing to “junk“, which can be done without knowledge of the randomness
for that instance of RECom. This avoids a potential circularity with regards to extracting from the
RECom while maintaining the hiding property of honestly evaluated RECom.

Hyb7,0: Change main thread RECom to random: In this hybrid, SimHyb modifies the third
round of the main thread to send “junk” responses. Specifically, for every honest party Pi and
malicious party Pj do the following:

– for every ℓ ∈ [N], pick a new degree 4 polynomial qℓ.
– compute recom3,ℓ as (0⊕ qℓ(0), qℓ(zℓ)).
Given that we changed our RECom to random, we want to claim that the adversary’s input

has not also become random.

Claim 48. Assuming the security of Com and the existence of ExtNMCom, the invariant holds in
Hyb7,0.

Proof. We prove that the invariant holds in the look-ahead threads that we make the changes
in. We know that the invariant holds Hyb6. The only difference between Hyb6 and Hyb7,0 is
that the simulator uses random polynomials to compute the third round messages of RECom
on the main thread. An alternate way to think of this is that either the polynomials used
inside Com and that used to compute the third round of RECom are the same, or they’re
independently sample random polynomials. Thus we think of the change as SimHyb switching
the commitment in Com from polynomials p to q while using p to compute the third round
of RECom. This is in fact done by a sequence of hybrids where only a single Com is changed
at a time. For simplicity, we proceed with the assumption that in this hybrid, only a single
commitment was changed. Assume, for the sake of contradiction, that the invariant doesn’t

117

hold in Hyb7,0. Then there exists an adversary A such that for some honest party Pi∗ and
malicious party Pj∗ , A causes event E to occur with non-negligible probability. We will use
this adversary to create an adversary ACom that breaks the hiding property of Com with non-
negligible probability.

We now describe the working of ACom which interacts with the challenger CCom. ACom

picks randomly an honest party Pi and a random malicious party Pj . All messages other than
the chosen Com messages are computed in the same manner as SimHyb. The Com messages
from Pi to Pj are exposed to the external challenger. Specifically, ACom sends two challenges
(pℓ, qℓ) to C. And sets recomi→j

1,ℓ := Com where Com is received from CCom. Depending on the
challenge used by CCom, we are either in Hyb6 or Hyb7,0.
ACom creates 2 look ahead threads where it runs rounds 2 and 3 of the protocol alone.

Now ACom runs the extractor ExtNMCom of the non-malleable commitment scheme using the
message in both the threads that correspond to the non-malleable commitment from ma-
licious party Pj to honest party Pi. Let the output of ExtNMCom be t∗. ACom checks if
TDValid(t∗, td1,i) = 1. If so, it outputs 1 to indicate Hyb7,2 and 0 otherwise.

By our assumption, the invariant doesn’t hold. Thus ExtNMCom, on adversary Pj∗ ’s commit-
ment to Pi, outputs a valid trapdoor ti∗ for the trapdoor generation messages of the honest
party Pi∗ with non-negligible probability ε. With probability at least 1

n2 , where n is the to-
tal number of players, this corresponds to honest party Pi and malicious party Pj picked
randomly by ACom. Therefore, with non-negligible probability ε

n2 , ExtNMCom outputs t∗ as a
valid trapdoor. Since the invariant holds in Hyb6, if ExtNMCom outputs t∗, it must be the case
that we’re in Hyb7,0 with non-negligible probability. That is, when ExtNMCom outputs a valid
trapdoor, it must correspond to ACom receiving the challenge using input q. This breaks the
security of Com, which is a contradiction. Thus the invariant must also hold for Hyb7,0.

This works because as long as the number of threads created to extract from NMCom is
less than Brecom, which is in fact true, since otherwise, the “random” polynomial no longer
appears random. It should be noted that we don’t need to extract the adversary’s input for
the reduction, and thus no use of creating any Type (ii) threads.

Claim 49. Assuming the security of Com, Hyb7,0 is indistinguishable from Hyb6

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue
that the adversary doesn’t switch to “junk” commitments when we make the change. The
only difference between Hyb6 and Hyb7,0 is that the simulator uses random polynomials to
compute the third round messages of RECom look-ahead threads.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary
A such that for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La

in Ecom such that the probability of accept in the two cases in non-negligible. We will use this
adversary to create an adversary ACom that breaks the security of Com with non-negligible
probability.

The proof is similar to that of Claim 21 and Claim 48.

Hyb7,1: Create Type (ii) look-ahead thread: In this hybrid, SimHyb creates Type (ii) threads
that are identical to the main thread. These will be used to extract the adversary’s input. We
create as many needed for the extraction of the adversary’s input.

118

Claim 50. Assuming the security of Com and the existence of ExtNMCom, the invariant holds in
Hyb7,1.

Proof. This trivially follows from the fact that invariant holds in Hyb7,0 are identical to the
main thread.

Claim 51. Assuming the security of Com, Hyb7,1 is indistinguishable from Hyb6

Proof. This follows as in the proof of Claim 49.

Hyb7,2: Change main thread RECom to 0: In this hybrid, SimHyb modifies the third round of
the main thread to commit to 0. Specifically, for every honest party Pi and malicious party Pj

do the following:
– compute recom3,ℓ as (0⊕ pℓ(0), pℓ(zℓ)).

where pℓ are the polynomials committed to in the first round.

Claim 52. Assuming the security of Com and the existence of ExtNMCom, the invariant holds in
Hyb7,2.

Proof. The proof follows as in 48.

Claim 53. Assuming the security of Com, Hyb7,2 is indistinguishable from Hyb6

Proof. The proof follows as in 49

Note that Hyb7,2 ≡ Hyb7
Thus Hyb7 is indistinguishable from Hyb6.

Claim 54. Assuming that Π is a secure protocol instantiated with rewinding secure ROT, hiding of OT
against malicious senders, hiding of Ecom, bounded rewind witness indistinguishability of RWI, Hyb8
is indistinguishable from Hyb7

Proof. This is proved via a sequence of hybrids. The reasoning behind this sub-division is that
if we directly make changes to the protocol on the main thread, a subtle issue shows up during
reduction. Namely, the look ahead threads currently employ an honest strategy using the inputs 0
for the underlying MPC. Additionally, they use the same first round message as the main thread.
Although, no proof is sent in the clear, honest behavior is proven via the commitment and the OT
receiver message on these look ahead thread, which requires knowledge of the randomness used
for the underlying MPC. This is problematic during a reduction to the security of the underlying
MPC. We will utilize the fact that our proofs are not sent in the clear to get around this issue.

Recall that we separate out the look ahead threads based on their purpose. Type (i) look-ahead
threads are used to extract the trapdoor, while the type (ii) look-ahead threads are used to extract
the inputs.

Hyb8,0: Change type (i) threads Ecom to 0: In this hybrid, SimHyb modifies the third round
of the type (i) threads to commit to 0 instead of commitment to RWI third round messages
corresponding to La.

Claim 55. Assuming the hiding of Ecom, Hyb8,0 is indistinguishable from Hyb7

119

Proof. Since we’re making changes only to type (i) threads used to extract trapdoor, we need
to ensure we’re still able to extract the trapdoor with this change. This can be done without
having to rewind to the extract the trapdoor. On receiving the third round of the adversary’s
message on these threads, we can use TDOut to check if the trapdoor messages sent by
the adversary satisfy validity. If there is a noticeable change in the validity condition being
satisfied, we can break the hiding property of Ecom.

Assume there exists an adversary D that results in the trapdoor validity check being passed
in Hyb8,0 and Hyb7 with non-negligible difference. We will use this to create an adversary
AEcom to break the hiding property of Ecom with non-negligible probability. Note that we
make changes to these threads one at a time.
AEcom picks randomly an honest party Pi and a random malicious party Pj . All messages

in the main and look ahead threads other than the Ecom messages from Pi to Pj on the
changed look ahead thread are identical. The Ecom messages from Pi to Pj are exposed to
the external challenger. The first two rounds are forwarded to and from the adversary. Then,
AEcom sends to the challenger the pair of values (0, rwii→j

a,3)

AEcom receives a third round message ecom3 which is either a commitment to 0 or rwii→j
a,3 .

This is sent to A as the third round message. The rest of the messages are obtained in the
same manner as SimHyb. Depending on which value was committed we are either in Hyb8,0 or
Hyb7. On completion of the execution, check the validity condition of the trapdoor messages
sent using TDOut. If the validity check passes, output 0 (to indicate we’re in Hyb7), else
output 1.

By our assumption, D results in non-negligible difference in the validity condition being
verified it the two hybrids with noticeable probability difference ε. Therefore, with non-
negligible advantage ε

n2 , AEcom wins the challenge game with CEcom which breaks the hiding
property of Ecom. Thus, ε must be negligible, and thus we continue to extract the trapdoor.

Since we continue to extract trapdoor, Hyb8,0 is indistinguishable from Hyb7.

Note that we don’t need to argue invariant here to argue indistinguishability since the look
ahead threads we extract inputs from are unchanged.
Hyb8,1: Change Type (i) threads receiver input to 0 in OT: In this hybrid, SimHyb modifies
the third round of the type (i) threads to use receiver input 0 in OT instead of the third round
messages of RWI corresponding to Lb.

Claim 56. Assuming the hiding of OT against malicious senders, Hyb8,1 is indistinguishable
from Hyb8,0

Proof. The proofs follows identically as in Claim 55. The only difference being the now the
OT messages are exposed to the external challenger. Since we’re still able to extract the
trapdoor, Hyb8,1 is indistinguishable from Hyb8,0.

We now make changes to look ahead threads of Type (ii)
Hyb8,2: Switch RWI proofs for La on Type (ii) threads: In this hybrid, SimHyb modifies the
third round of the type (ii) threads to switch to the “trapdoor witness” in the RWI proofs for
La. This is done a single thread at a time.

We need to ensure that we still continue extracting the inputs of the adversary. This is
done by proving the invariant holds in each of the threads when we make this change.

120

Claim 57. Assuming bounded rewind witness indistinguishability of RWI, and the existence of
an extractor ExtNMCom the invariant holds in Hyb8,2 .

Proof. The proof follows identically as in Claim 22.

Claim 58. Assuming bounded rewind witness indistinguishability of RWI, Hyb8,2 is indistin-
guishable from Hyb8,1.

Proof. The proof follows identically as in Claim 23.

Hyb8,3: Switch RWI proofs for Lb on Type (ii) threads: In this hybrid, SimHyb modifies the
third round of the type (ii) threads to switch to the “trapdoor witness” in the RWI proofs for
Lb. This is done a single thread at a time.

Claim 59. Assuming bounded rewind witness indistinguishability of RWI, and the existence of
an extractor ExtNMCom the invariant holds in Hyb8,3 .

Proof. The proof follows identically as in Claim 22.

Claim 60. Assuming bounded rewind witness indistinguishability of RWI, Hyb8,3 is indistin-
guishable from Hyb8,2.

Proof. The proof follows identically as in Claim 23.

Hyb8,4: Switch RWI proofs for Lb on Type (ii) threads: In this hybrid, SimHyb modifies the
third round of the type (ii) threads to switch to the “trapdoor witness” in the RWI proofs for
Lb. This is done a single thread at a time.
Hyb8,5: Simulate Π on main thread: In this hybrid, SimHyb modifies the transcript of the
underlying protocol Π. For a complete description of the changes, refer to the description of
Hyb8.

Claim 61. Assuming that Π is a secure protocol instantiated with rewinding secure ROT, the
invariant holds in Hyb8,5.

Proof. Here, since the invariant only depends on the first three rounds, we need to prove that
the invariant holds conditioned on the view of the first three rounds. The proof is similar to
Claim 31.

Claim 62. Assuming that Π is a secure protocol instantiated with rewinding secure ROT, Hyb8,5
is indistinguishable from Hyb8,4.

Proof. The only difference between Hyb8,5 and Hyb8,4 is how the transcript of the underlying
protocol Π is computed.

Assume, for the sake of contradiction, that that the views are distinguishable. Then there
exists an adversary D such that D can distinguish between Hyb8,5 and Hyb8,4 with non-
negligible advantage. We will use this adversary to create an adversary AΠ that breaks the
indistinguishability of Π when instantiated with bounded rewinding secure ROT with non-
negligible probability. Essentially, we rely on the fact that if the ROT is rewinding secure,
then the transcript of Π for an honest and simulated transcript are indistinguishable.

121

We now describe the working of AΠ which interacts with the challenger CΠ. All messages
other than the Π messages are computed in the same manner as SimHyb. The Π messages
from are exposed to the external challenger. Specifically, in round 1, set {msg1,i}Pi∈H := −−→msg1
where −−→msg1 is received from CΠ. Send to CΠ {msg1,i}Pi /∈H that is sent by A. The response
from CΠ, −−→msg2 is parsed as {msg2,i}Pi∈H := −−→msg2.
AΠ then creates a set of 3 type (i) look-ahead threads, in each of which, it runs rounds

2 and 3 of the protocol alone. This is done to extract the trapdoor. This doesn’t require
generating proofs on these look-ahead threads. Now, with the extracted trapdoor, AΠ then
creates a set of 5 type (ii) look-ahead threads, in each of which, it runs rounds 2 and 3 of
the protocol alone. In each look-ahead thread, AΠ forwards the {msg2,i}Pi /∈H sent by A in
each look-ahead thread to CΠ. These are simply ROT messages and will be responded to by
CΠ. The response is likewise forwarded to A. These 5 threads are all GOOD with respect to
some party H with noticeable probability. With the 5 threads, AΠ can successfully run the
extraction phase. Note that in these threads, AΠ can use the “trapdoor witness” extracted
using the type (i) threads.

On completion of the extraction phase, prior to the third round on the main thread, AΠ

sends to CΠ all parties inputs ({xi, ri}i∈[n], y) to CΠ. CΠ then either responds with the simulated
last message or the honest execution for the rest of the transcript. The rest of the messages
are obtained in the same manner as SimHyb. Depending on the choice of CΠ we are either in
Hyb8 or Hyb7. On completion of the execution, the view is input to D and the output returned
is the output of AΠ

By our assumption, D can distinguish between the two hybrids with non-negligible prob-
ability ε. Therefore, with non-negligible advantage ε, AΠ wins the challenge game with CΠ
which breaks the security of Π when rewinding security of ROT is maintained. Thus, ε must
be negligible, and thus the views are indistinguishable.

Remark 12. For the case of the implicit abort, in the above sub-hybrid we replace the Π messages
of honest parties to be computed honestly using input 0. The arguments then follow identically
as above and Claims 31 and 32.

Now we undo the changes made to the look ahead threads. The proofs follow identically
as argued above, and are skipped.
Hyb8,6: Switch RWI proofs for Lb on Type (ii) threads: In this hybrid, SimHyb modifies the
third round of the type (ii) threads to switch back to the “real witness” in the RWI proofs for
Lb. This is done a single thread at a time.
Hyb8,7: Change Type (i) threads receiver input to RWI message in OT: In this hybrid,
SimHyb modifies the third round of the type (i) threads to use receiver input to be the third
round message of RWI, corresponding to Lb, in OT, instead of 0.
Hyb8,8: Change Type (i) threads Ecom to RWI message: In this hybrid, SimHyb modifies the
third round of the type (i) threads to commit to RWI third round messages corresponding to
La instead of the commitment to 0.

Note that Hyb8,8 ≡ Hyb8

Claim 63. The invariant holds in Hyb9.

Proof. The claim is trivially true since there are no changes to the main thread.

122

Claim 64. Hyb9 is indistinguishable from Hyb8 except with negligible probability.

Proof. Except with negligible probability, the extraction from OT succeeds, and therefore the simu-
lator does not abort.

Claim 65. The invariant holds in Hyb10.

Proof. The claim is trivially true since the change is made only in the fourth round.

Claim 66. Assuming the security of GC and sender’s OT messages, Hyb10 is indistinguishable from
Hyb9

Proof. This is established by the creating the following sub-hybrids.
Hyb10,0: Change OT sender’s message on main thread: In this hybrid, SimHyb changes how
the sender OT is computed. We extract from ot to obtain the adversary’s receiver message.
Use the receiver value extracted from the ot to change the sender OT to include only a single
label of the garbled circuit. Specifically, ∀j ̸= i, compute

oti→j
4 ← OT4((labi,v|j , labi,v|j)).

where v is the extracted receiver string from oti→j
3 .

Claim 67. Assuming the security of sender’s OT messages, Hyb10,0 is indistinguishable from Hyb9

Proof. The only difference between Hyb10,0 and Hyb9 is that the simulator SimHyb switches
the sender OT input to using the same label twice Pi if it receives a non-accepting RWI proof
for La.

Assume, for the sake of contradiction, that that the views are distinguishable. Then
there exists an adversary D such that D can distinguish between Hyb10,0 and Hyb9 with non-
negligible advantage. We will use this adversary to create an adversary AOT that breaks the
sender’s security in OT with non-negligible probability.

We now describe the working of AOT which interacts with the challenger COT. AOT picks
randomly an honest party Pi and a random malicious party Pj . All messages other than the
chosen OT messages are computed in the same manner as SimHyb. The OT messages from
Pi to Pj are exposed to the external challenger. Specifically, in round 1, send to COT the first
round OT message oti→j

1 sent by A. Receive ot2 and set oti→j
2 := ot2.

AOT creates sufficiently many look-ahead threads, in each of which, it runs rounds 2 and 3
of the protocol alone. In each look-ahead thread, AOT re-sends the same oti→j

2 message in the
second round. Only oti→j

3 on the main thread is forwarded to COT. With the the look ahead
threads threads, AOT can successfully run the extraction phase to extract the OT receiver bit
from Pj to be v. Send

(
labi,0|j , labi,1|j

)
and

(
labi,v|j , labi,v|j

)
to COT as challenges. Note that

we don’t need rewind security here since the look ahead threads are only executed up to the
third round. And for the alternating message OT, a new adversarial receiver message doesn’t
have to be answered on the look ahead threads.

The rest of the messages are obtained in the same manner as SimHyb. Depending on pair
was used as sender input we are either in Hyb10,0 or Hyb9. On completion of the execution,
the view is input to D and the output returned is the output of AOT

By our assumption, D can distinguish between the two hybrids with noticeable probability
ε. Therefore, with non-negligible advantage ε

n2 , AOT wins the challenge game with COT

123

which breaks the sender security of OT. Thus, ε must be negligible, and thus the views are
indistinguishable.

Hyb10,1: Simulate garbled circuit: In this hybrid, SimHyb computes a garbled circuit to output
⊥ if either in implicit abort or opaque case. Specifically, in this case,

(
Ci, l̃abi

)
← Garble (C⊥)

Claim 68. Assuming the security of GC, Hyb10,1 is indistinguishable from Hyb10,0

Proof. The only difference between Hyb10,1 and Hyb10,0 is that the simulator SimHyb switches
the garbled circuit to a circuit for each relevant Pi. Note that this is a functionally equivalent
circuit given the condition we choose to switch. Namely, either there is an implicit abort, or
that Pi receives a wrong RWI proof via OT. The changes are made through a sequence of
sub-hybrids, where in each sub-hybrid only a single circuit is switched.

Assume, for the sake of contradiction, that that the views are distinguishable. Then there
exists an adversary D such that D can distinguish between Hyb10,1 and Hyb10,0 with non-
negligible advantage. We will use this adversary to create an adversary AGC that breaks GC
security with non-negligible probability.

We now describe the working of AGC which interacts with the challenger CGC. All mes-
sages other than the garbled circuit are computed in the same manner as SimHyb. The GC
messages from Pi are exposed to the external challenger. Specifically, in round four, it sends
as challenges to CGC, (C⊥, v) and (C[msg4,i,T

•→i
rwib

[2], st•→i
b , r•→i

rwib
], v) where v is the concatena-

tion of all extracted/generated receiver values for all parties other than Pi. CGC then returns
a garbled circuit C and labels corresponding to the input v, l̂ab. These are set as Ci := C and
l̂abi := l̂ab. The rest of the messages are obtained in the same manner as SimHyb. Depend-
ing on challenge bit used by CGC we are either in Hyb10,1 or Hyb10,0. On completion of the
execution, the view is input to D and the output returned is the output of AGC.

By our assumption, D can distinguish between the two hybrids with noticeable probability
ε. Therefore, with non-negligible advantage, AGC wins the challenge game with CGC which
breaks the security of GC. Thus, ε must be negligible, and thus the views are indistinguish-
able.19

Hyb10,2: Change OT sender’s message on main thread: In this hybrid, SimHyb changes how
the sender OT is computed.

Change the sender OT to include back to include both labels of the garbled circuit. Specif-
ically, ∀j ̸= i, compute

oti→j
4 ← OT4((labi,0|j , labi,1|j)).

Claim 69. Assuming the security of sender’s OT messages, Hyb10,2 is indistinguishable from Hyb9

Proof. The proof follows identically as in Claim 67.

Note that Hyb10,2 ≡ Hyb10.

19For ease of proof, we use the indistinguishability definition instead of the simulation definition as given in the prelims.
This is easily rectified by having another intermediate hybrid where the simulated garbled circuit it used.

124

Claim 70. The invariant holds in HybIDEAL.

Proof. The claim is trivially true since the main thread remains unchanged.

Claim 71. Hyb10 is indistinguishable from HybIDEAL except with probability at most µ
4 + negl(λ).

Proof. This is argued in two cases depending on the probability with which the adversary abort.

Case 1: Pr[not abort] ≥ µ
4 :

Suppose the adversary doesn’t cause an abort with probability greater that µ
4 . Let us analyze

the probability with which ⊥extract is output by SimHyb. By the Chernoff bound, in Hyb11,
except with negligible probability, in the set of 5·n·λ

µ threads, there will be at least 5 GOOD

threads with respect to some honest party Pi∗ . Also in HybIDEAL, SimHyb will run an expected
polynomial number of threads to get 12λ (which is greater than 5 · n) GOOD threads. Thus
the extractions will be successful in except with negligible probability.

Therefore the only difference between HybREAL and Hyb11 is that in Hyb11, after extrac-
tion, SimHyb samples the main thread λ

µ times while in HybREAL, SimHyb first estimates the

probability of not aborting to be ε′ and then re-samples the main thread min
(
2λ, λ2

ε′

)
times.

The rest of the proof follows in a very similar manner to the proof of claim 5.8 in [Lin16].
That is, we show that if “Check Abort” step succeeds, the simulator in HybIDEAL fails only with
negligible probability using the claim in [Lin16]. Also, by a Markov argument, we know that
Hyb11, if the “Check Abort” step succeeds, the simulation successfully forces the output and
hence, this completes the proof.

Case 2: Pr[not abort] < µ
4 :

Suppose the adversary doesn’t cause an abort with probability smaller than µ
4 . Then, in

both hybrids, SimHyb aborts at the end of the “Check Abort” step except with probability µ
4 .

Thus, in this case, the adversary’s view in HybIDEAL and Hyb11 is indistinguishable except with
probability at most µ

4 + negl(λ).

We now calculate the probability that the adversary can distinguish between HybREAL and
HybIDEAL.

Except in two cases, every pair of hybrids are indistinguishable except with negligible probabil-
ity. In the two special cases, the hybrids are indistinguishable except with probability µ

4 + negl(λ).
Thus, HybREAL and HybIDEAL are indistinguishable except with probability µ

2 + negl(λ). This contra-
dicts our assumption that there must be an adversary A that can distinguish the REAL and IDEAL
executions with probability at least µ.

4.6 Bidirectional to Alternating message model

In [GMPP16] the authors prove that there does not exist a 3-round protocol in the bidirectional
message model for tossing ω(log λ) coins which can be proven secure via blackbox simulation. To
prove this theorem, the authors show how to reschedule a 3-round protocol in the bidirectional
message into a 4-round non-simultaneous protocol thus contradicting the impossibility of [KO04].
In this section we extend the proof approach used in [GMPP16] to show the following. Let Π↔ =

125

(A↔, B↔) be a k-round two-party protocol (2PC) that securely computes the function f in the
bidirectional message model. f takes the inputs of the parties A↔ and B↔, that we denote with
xA↔ and xB↔ respectively, and outputs yA↔ and yB↔ , where yA↔ corresponds to the output of
A↔ and yB↔ corresponds to the output of B↔. We show how to obtain a k-round 2PC protocol
Π⇆ = (A,B) in the alternating message model, in which at least one party gets the output.

Theorem 16. Any k-round two party protocol (2PC) Π↔ that securely computes f in the bidirectional
message model, proven secure via blackbox simulation, can be turned into a k-round two party protocol
in the alternating message model, in which at least one party gets the output of f .

Proof. We show how to obtain a k-round 2PC protocol Π⇆ = (A,B), in the alternating message
model, that securely computes f in which only one party gets the output. Without loss of generality,
we assume that only the party B gets the output. We denote with mA

i the message that the party
A↔ sends in the i-th round of Π↔, and with mB

i the message that the party B↔ in the i-th round
of Π↔ with 1 ≤ i ≤ k.

In Π⇆ the party A computes its messages by internally running A↔, and the same does B with
B↔. We provide an high level description of Π⇆ in Fig 4.6. The main observation that makes
possible to reschedule the messages of Π↔ in the alternating message model is that the message
that B↔ sends to A↔ in the last round of Π↔ can be removed given that A does not need to compute
the output. Moreover, the security of Π↔ is proved by considering a rushing adversary. This means
that a message that an honest party sends in the round i-th of Π↔ has to be independent from the
message that the other party sends in the i-th round. We propose a more formal description of Π⇆

in Fig. 4.7.

mB
1mA

1

mB
2

mB
i

mB

k

mA
2

mA
i

mA

k

mB
i+1mA

i+1

mB
1

mA
1

mA
i−1

mA
2

mA
i

mA

k−1 mA

k

b
b
b

b
b
b

b
b
b

b
b
b

mB
i+1mB

i

A↔ B↔ A B

Rescheduled

Figure 4.6: High level description of the rescheduled messages.

We start by considering the case in which B is corrupted (we denote a corrupted party P with
P ⋆). Then we need to build an expected PPT simulator S⇆ that satisfies the Definition 15. Since
Π↔ is secure, then there exists a simulator S↔ in the ideal world for any corrupt B↔⋆ executing
the simultaneous message exchange protocol Π↔. Our simulator S⇆ is constructed using S↔ and
works as follows.

1. S⇆, upon receiving mB
1 from B⋆, forwards mB

1 to S↔. S↔ outputs (mA
1 ,m

A
2) (note that the

inner simulator must be able to produce mA
2 even before seeing the second message mB

2 of
party B↔⋆ given that the B↔⋆ is rushing). Moreover, S⇆ acts as a proxy between S↔ and
the ideal functionality and whenever S↔ asks to rewind the adversary, S⇆ rewinds B⋆

126

Round-1: B runs Π↔ on behalf of B↔ thus obtaining the mB
1 and sends it to A

Round-i with 1 < i < k, i mod 2 = 0: A runs Π↔ on behalf of A↔ to compute the
messages (mA

i−1,m
A
i) and sends them to B .

Round-i with 1 < i < k, i mod 2 ̸= 0: B runs Π↔ on behalf of B↔ to compute the
messages (mB

i−1,m
B
i) and sends them to A.

Round-k: A runs Π↔ on behalf of A↔ to compute the messages (mA
k−1,m

A
k) and sends

them to B.

Figure 4.7: Π⇆ description.

2. Upon receiving the message mi = (m,m′) from B⋆ in the i-th round, with 1 < i < k − 1,
S⇆, sends m to S↔, receives mA

i−1 and sends also m′ to S↔. S↔ now outputs mA
i which S⇆

sends to B⋆.

3. Upon receiving the message mk−1 = (m,m′) from B⋆ in the k-th round, S⇆ sends m to S↔,
receives mA

k−1 and sends also m′ to S↔. S↔ now outputs mA
k and S⇆ sends (mk−1,mk) to

B⋆. In the end S⇆ sends an abort message to S↔ (to indicate that the adversary has not sent
the last message) and outputs what S↔ outputs.

It should be easy to see that S⇆ emulates correctly B↔⋆ and hence S⇆ represents a good
adversary for the ideal world. The proof for the case in which A is corrupted is similar, with the
difference that the last message output by the inner simulator S↔ is not forwarded to A⋆.

4.7 Open Problems

While our work concludes a long line of research on constructing round-optimal MPC from min-
imal assumptions, studying round-optimal protocols for stronger security notions such as that of
identifiable abort, where participants can prove that a participant misbehaved, still remain open.

127

Chapter 5

Founding Secure Computation on
Blockchains

5.1 Overview

We start with an overview of the techniques before moving on to the technical sections. Recall that
an adversary is said to be blockchain-active if can read from and post to the blockchain (Section
2.14). We observe that if an adversary is blockchain-active, it can “detect” that it is being rewound
by posting the transcript of the interaction so far on the blockchain. In more detail, upon getting an
incoming message, the adversary concatenates the entire transcript with a session ID and submits
it to the blockchain Oracle. Before giving a response, the adversary waits for the next block to be
mined and checks the following: the transcript it posted on the blockchain has indeed appeared,
and, no such transcript (for the same session and the same round) appeared on any of the prior
blocks. If the check passes (which is guaranteed in the real execution), the adversary proceeds hon-
estly with computing and sending the next protocol message. We show that it would be impossible
for any polynomial-time simulator to rewind this adversary which forms the basis of our black-box
impossibility result for zero-knowledge.

Constructing Black-Box Zero-Knowledge Protocols. To overcome the above problems posed by
blockchains, we look towards blockchains for a solution as well. Our idea is to make the protocol
blockchain active as well. Specifically, we let the honest prover keep track of the blockchain state,
and, if the number of new blocks mined since the beginning of the protocol exceed a fixed number
k, abort. Thus, the honest parties use the blockchain to implement a time-out mechanism. We
emphasize, however, that we do not require the honest parties to have synchronized clocks. The
only requirement placed is that the protocol must be finished in an a priori bounded amount of
time, as measured by the progress of the blockchain. For example, while using Bitcoin, if k is set to
20, this gives the parties nearly 3.5 hours to finish the zero-knowledge protocol before a time-out
occurs (since a block is mined roughly every 10 minutes in Bitcoin). For simplicity, we will treat
the parameter k as a constant (even though our constructions can handle an arbitrary value of k by
scaling the round complexity of the protocol appropriately).

We devise a construction for black-box zero-knowledge proofs where the number of “slots”
(or rewinding opportunities) in the protocol is higher than k. While the adversary can send any

128

information to the blockchain Oracle at any point of time, there can be at most k points in the
protocol execution where the adversary actually receives from the Oracle a new (unforgeable) mined
block. However by our construction, this would still leave several slots in the protocol where the
simulator is free to rewind (without having to forge the blockchain state).

A potentially complication in the design of the simulator arises from the fact that, apart from the
newly mined blocks, the adversary can also “listen in” on the network communication in real time.
This could consist of various (honest party) transactions currently outstanding on the network
and waiting to be included in the next block. This is formalized by buffer reads in the model of
Badertscher et. al [BMTZ17]. We handle this problem by having the simulator simply replay the
honest-party outstanding transactions since they could not have changed from the main thread to
the look-ahead thread. The adversarial outstanding transactions (which might change from thread
to thread) in the current thread are already known to the simulator since the simulator can read all
outgoing messages from the adversary. The above ideas form the basis of our first positive result
modulo the issue of simulation time which is discussed next.

The Issue of Simulation Time. Interestingly, the fact that blockchains can be used to implement
a global unforgeable clock presents a novel challenge in proving security against blockchain-active
adversaries, that to the best of our knowledge, does not arise elsewhere in cryptography. Typically
in cryptography, the running time of the simulator is larger than the running time of the adversary.
This means that the number of blocks mined during a simulated execution may be higher than the
number of blocks mined during a real execution. Then, the number of mined blocks can be used as
“side-channel” information to distinguish real and simulated executions, if the adversary and the
distinguisher are blockchain-active! Such a difficulty does not arise in the plain model since the
simulator is assumed to have complete control over the clock of the adversary (including the ability
to freeze it).

To address this issue, we seek to construct a simulator whose running time is the same as the
real protocol execution. Towards that end, we build upon techniques from the notion of precise
zero-knowledge [MP06]. To start with, it would seem that we need to construct a simulator with
precision exactly 1, something that is currently not known to be possible. To resolve this problem,
our key observation is that there is a crucial difference between the time that the simulator takes to
finish and the number of computation steps it executes. In particular, if the simulator can execute a
number of computations in parallel, it could potentially perform more computations than the prover
in the real execution, and yet, finish in the same amount of time. Our rewinding strategy would
run several threads of execution in parallel (e.g., by making several copies of the adversary code)
and ensure that by the time the main1 thread finishes, all the rewound execution threads have
finished as well. To ensure that the simulation succeeds, our simulator is necessarily required to
have a super-constant number of rewinding opportunities (which can be pursued in parallel). Such
a simulator would give a guarantee of the following form: any information learnt by an adversarial
verifier in the protocol could also be produced from scratch by an algorithm which is capable of
running sufficient (polynomial) number of computations in parallel. For example, a quad core
processor is capable of running 4 parallel computations.

We believe that the issue of simulation time is one of independent interest. In particular, de-
veloping an understanding of the time required by the simulator (as opposed to the number of
computation steps) could shed additional light on the knowledge complexity of cryptographic con-
structions as well as motivate the study of strong notions of security.

1The thread output by the simulator is referred to as the main thread.

129

Lower Bound on Round Complexity of Black-Box Zero-Knowledge. We prove that constant
round ZK arguments are impossible w.r.t black-box simulation in the blockchain-hybrid model. Our
impossibility result holds even for expected polynomial-time simulators.

Consider an adversarial verifier that waits for a fixed constant time c before responding to any
message from the prover. Our proof works in two steps:

1. Recall that black-box simulators can only query the adversarial verifier as an Oracle. However,
the simulator may choose to make these queries in parallel rather than sequentially by making
several copies of the adversary state (and hence, increasing the number of available Oracles).

In the first step, we assume that the simulator is memory bounded. This means that at any
given time, the simulator may only have a bounded (strict polynomial) number of copies (say)
q(·) of the adversary. Furthermore, since the verifier takes time c to answer each query, the
total number of queries the simulator may make to the adversary in a given time t can be
bounded by q·t

c (an a priori bounded strict polynomial). Now we observe the following:

– The simulator must terminate within roughly t steps where t is the time an honest prover
takes to complete the proof. To see this, let r be an upper bound on the number of
blocks that can created in the time taken by the honest prover to complete the proof. We
consider a blockchain active adversary that observes the state of the blockchain when
the protocol starts, and posts a transcript on the completion of the proof. If it notices
that more than r blocks have been created since the protocol started, it concludes that it
is interacting with the simulator.

– Thus, the overall number of queries (and hence) the running time of the simulator is a
strict polynomial. Now, we can directly invoke the result of Barak and Lindell [BL02] that
rules out constant-round ZK arguments with strict polynomial-time black-box simulation.

2. The above only rules out a simulator with “a priori bounded parallelism.” However what if,
e.g., the number of parallel queries the simulator may make to the verifier cannot be a priori
bounded (and instead we only require that the simulator finish in a priori bounded number of
computational steps)? In particular, the simulator may see the responses to the queries made
so far, and, adaptively decide to increase the number of parallel queries (i.e., the number of
copies of the adversary)? This case is more tricky and as such, the ideas from the work of
[BL02] don’t apply.

To resolve this issue, we crucially rely upon the fact that by carefully choosing the delay
parameter c and an aborting probability for the adversary, the number of such “adaptive steps”
can be bounded by a constant. Thereafter, we argue that in each adaptive step, if the simulator
increases the number of parallel copies by more than an a priori bounded polynomial factor,
it runs the risks of blowing the number of computation steps to beyond expected polynomial.
On the other hand if the number of parallel copies blow up by at most a fixed polynomial
factor, since the number of adaptive steps is a constant, the simulator is still using “bounded
parallelism” (a case already covered by our previous step). The full proof is delicate and can
be found in Section 5.5.

Concurrent Secure computation. We now proceed to describe the main ideas behind our positive
result for concurrent self-composable secure computation. We start by recalling the intuition behind
the impossibility of concurrent secure computation w.r.t. black-box simulation in the plain model.

A primary task of a simulator for a secure computation protocol is to extract the adversary’s
input. A black-box simulator extracts the input of the adversary by rewinding. However, in the

130

concurrent setting, extracting the input of the adversary in each session is a non-trivial task. In
particular, given an adversarial scheduling of the messages of concurrent sessions, it may happen
that in order to extract the input of the adversary in a given session s, the simulator rewinds past
the beginning of another session s′ that is interleaved inside the protocol messages of session s.
When this happens, the adversary may change its input in session s′. Thus, the simulator would be
forced to query the ideal functionality more than once for the session s′.

Indeed, as shown in [Lin04], this intuition can be formalized to obtain a black-box impossibility
result for concurrent self-composition w.r.t. the standard definition of secure computation, where
only one query per session is allowed. While Lindell’s impossibility result is only w.r.t. black-box
simulation, subsequent works have shown impossibility of concurrent secure computation even
w.r.t. non-black-box simulation [BPS06, Goy12, AGJ+12, GKOV12].

In order to overcome the impossibility results, our starting idea is the following: prior to the start
of a protocol, each party must commit to its input and randomness on the blockchain. It must then
wait for its commitment string to be posted on the blockchain before sending any further message in
the protocol. Similar to our ZK protocols (with stand-alone security), we use a time-out mechanism
to place an upper bound on the number of blocks that can be mined during a session. Then, by
using sufficiently many rewinding “slots,” we can ensure that there exist some slots in each session
where the adversary is guaranteed to not see new block (and hence no new interleaved sessions),
making them “safe” for rewinding. Note, however, that this mechanism does not bound the overall
number of concurrent sessions since an adversary can start any polynomial number of sessions in
parallel.

Once we have the above protocol template, the key technical challenge is to perform concur-
rent extraction of the adversary’s inputs in all of the sessions. Since there are multiple “unsafe”
rewinding slots in every session (wherever a new block is mined), we need to extract adversary’s
inputs in all of the sessions under the constraint that only the safe slots are rewound. Unfortunately,
commonly known rewinding strategies in the concurrent setting [RK99, KP01, PRS02] rewind all
parts of the protocol transcripts (potentially multiple times). Therefore, they immediately fail in
our setting.

In order to solve this problem, we develop a new concurrent rewinding strategy. The starting
idea towards developing this rewinding strategy is the observation that our particular setting has
some similarities to the work of Goyal et al. [GLP+15] who were interested in a seemingly unre-
lated problem: designing commitment schemes that are secure w.r.t. chosen commitment attacks
[CLP10]. Goyal et al. introduced what they call the “robust extraction lemma” that guarantees
concurrent extraction even if a constant number of “breakpoints” – that cannot be rewound – are
interspersed throughout the overall transcript of the concurrent sessions. These breakpoints are
analogous to the unsafe points in our setting.

While this serves as a useful starting point, robust extraction is not directly applicable to our
setting since overall, the number of external blocks seen by the adversary (the equivalent of break-
points in [GLP+15]) cannot be bounded. Indeed, if the number of sessions is T , the number of
blocks can only be upper bounded by T · k (if e.g., all the sessions are sequential).

Our main observation is that the concurrent adversary can only choose one of the following:
either too much concurrency, or too many newly mined blocks, but not both. This allows us to
come up with a new variant and analysis of the robust extraction lemma which we believe could be
of independent interest. In particular, our new variant uses twice as many slots as the one used by
the robust extraction lemma. We refer the reader to the technical sections for more details.

131

5.2 Definitions and Preliminaries

Unless otherwise specified, we consider the adversaries that have access to the global functionality
Gledger, and thus the view includes messages received from and sent to Gledger. Thus, when we denote
that two distributions representing the views of parties with access to Gledger are computationally
indistinguishable in the Gledger-hybrid model, we give distinguisher access to the global Gledger func-
tionality. An immediate consequence of this is that, any view generated by a simulator using a
privately initialized Gledger functionality will be trivially distinguished from the real execution by the
distinguisher that views the state of the global Gledger.

5.2.1 Zero Knowledge in the Gledger-hybrid model

Definition 35. An interactive protocol (P,V) for a language L is zero knowledge in the Gledger-hybrid
model if the following properties hold:

– Completeness. For every x ∈ L,

Pr
[
outV ⟨P(x,w),V(x)⟩ = 1

]
= 1

– Soundness. There exists a negligible function negl(·) s.t. ∀x /∈ L and for all adversarial prover
P∗.

Pr
[
outV ⟨P∗(x),V(x)⟩ = 1

]
≤ negl(λ)

– Zero Knowledge. For every PPT adversary V ∗, there exists a PPT simulator Sim such that the
probability ensembles

–
{
ViewV ⟨P(x,w),V(x, z)⟩

}
x∈L,w∈RL(x),z∈{0,1}∗

–
{
Sim(x, z)

}
x∈L,w∈RL(x),z∈{0,1}∗

are computationally indistinguishable in the Gledger-model.

5.2.2 Concurrently Secure Computation in the Gledger-hybrid model

In this work, we consider a malicious, static adversary that chooses whom to corrupt before the
execution of the protocol. The adversary controls the scheduling of the concurrent executions. We
only consider computational security and therefore restrict our attention to adversaries running in
probabilistic polynomial time. We denote computational indistinguishability by≈c, and the security
parameter by λ. We do not require fairness and hence in the ideal model, we allow a corrupt party
to receive its output in a session and then optionally block the output from being delivered to the
honest party, in that session. Further, we only consider “security with abort”. To formalize the above
requirement and define security, we follow the standard paradigm for defining secure computation
(see also [Lin08]). We define an ideal model of computation and a real model of computation, and
require that any adversary in the real model can be emulated by an adversary in the ideal model.
More details follow.

IDEAL MODEL. We first define the ideal world experiment, where there is a trusted party for
computing the desired two-party functionality F : {0, 1}r1 × {0, 1}r2 → {0, 1}s1 × {0, 1}s2 . Let P1

132

and P2 denote the two parties in a single execution. In total. let there be k parties Q1, Q2, · · · , Qk,
where each party may be involved in multiple sessions with possibly interchangeable roles, i.e.
Qi may play the role of P1 in one session and P2 in some other session. Let the total number of
executions be m = m(n). For each ℓ ∈ [m], we will denote by P ℓ

1 , the party playing the role of
P1 in session ℓ. P ℓ

2 is defined analogously. The adversary may corrupt any subset of the parties in
Q1, . . . , Qk. The ideal world execution proceeds as follows:

I Inputs: There is a PPT usage scenario which gives inputs to all the parties. For each session
ℓ ∈ [m], it gives inputs xℓ ∈ X ⊆ {0, 1}r1 to P ℓ

1 and yℓ ∈ Y ⊆ {0, 1}r2 to P ℓ
2 . The adversary is

given auxiliary input z ∈ {0, 1}∗, and chooses the subset of the parties to corrupt, say M . The
adversary receives the inputs of the corrupted parties.

II Session initiation: When the adversary wishes to initiate the session number ℓ, it sends a
(start-session, ℓ) message to the trusted party. On receiving a message of the form (start-session, ℓ),
the trusted party sends (start-session, ℓ) to both P ℓ

1 and P ℓ
2 .

III Honest parties send inputs to the trusted party: Upon receiving (start-session, ℓ) from the
trusted party, an honest party P ℓ

i sends its real input along with the session identifier. More
specifically, if P ℓ

1 is honest, it sends (ℓ, xℓ) to the trusted party. Similarly, an honest P ℓ
2 sends

(ℓ, yℓ) to the trusted party.

IV Corrupted parties send inputs to the trusted party: At any point during execution, a cor-
rupted part P ℓ

1 may send a message (ℓ, x′
ℓ) to the trusted party, for any string x′

ℓ (of appropriate
length) of its choice. Similarly, a corrupted party P ℓ

2 sends (ℓ, y′ℓ) to the trusted party, for any
string y′ℓ (of appropriate length) of its choice.

V Trusted party sends results to the adversary: For a session ℓ, when the trusted party has
received messages from both P ℓ

1 and P ℓ
2 , it computes the output for that session. Let x′

ℓ and
y′ℓ be the inputs received from P ℓ

1 and P ℓ
2 , respectively. It computes the output F(x′

ℓ, y
′
ℓ). If

either P ℓ
1 or P ℓ

2 is corrupted, it sends (ℓ,F(x′
ℓ, y

′
ℓ)) to the adversary. If neither of the parties is

corrupted, then the trusted party sends the output message (ℓ,F(x′
ℓ, y

′
ℓ)) to both P ℓ

1 and P ℓ
2 .

VI Adversary instructs the trusted party to answer honest players: For a session ℓ, where
exactly one of the party is corrupted, the adversary, depending on its view up to this point,
may send the message (output, ℓ) to the trusted party. Then, the trusted party sends the output
(ℓ,F(x′

ℓ, y
′
ℓ)), computed in the previous step, to the honest party in session ℓ.

VII Outputs: An honest party always outputs the value that it received from the trusted party.
The adversary outputs an arbitrary (PPT computable) function of its entire view (including
the view of all corrupted parties) throughout the execution of the protocol including messages
exchanged with the Gledger functionality.

The ideal execution of a function F with security parameter λ, input vectors −→x ,−→y , auxiliary
input z to Sim and the set of corrupted parties M , denoted by IDEALFM,Sim(λ,

−→x ,−→y , z), is defined
as the output pair of the honest parties and the ideal world adversary Sim from the above ideal
execution.

REAL MODEL. We now consider the real model in which a real two-party protocol is executed (and
there exists no trusted third party). Let F ,−→x ,−→y , z be as above and let Π be a two-party protocol for
computingF . LetA denote a non-uniform probabilistic polynomial time adversary that controls any
subset M of parties Q1, . . . , Qk. The parties run concurrent executions of the protocol Π, where the
honest parties follow the instructions of Π in all executions. The honest party initiates a new session

133

ℓ, using the input provided whenever it receives a start-session message from A. The scheduling
of all messages throughout the execution is controlled by the adversary. That is, the execution
proceeds as follows: the adversary sends a message of the form (ℓ,msg) to the honest party. The
honest party then adds msg to its view of session ℓ and replies according to the instructions of Π
and this view in that session. At the conclusion of the protocol, an honest party computes its output
as prescribed by the protocol. Without loss of generality, we assume the adversary outputs exactly
its entire view in the execution of the protocol, which includes messages exchanged with the Gledger
functionality.

The real concurrent execution of Π with security parameter λ, input vectors −→x ,−→y , auxiliary
input z to A and the set of corrupted parties M , denoted by REALFM,A(λ,

−→x ,−→y , z), is defined as the
output pair of the honest parties and the real world adversary A from the above real world process.

Definition 36. Let F and Π be as above. Then protocol Π for computing F is a concurrently secure
computation protocol in the Gledger-hybrid model if for every probabilistic polynomial time adversary A
in the real model, there exists a probabilistic polynomial time adversary Sim in the ideal model such
that for every polynomial m = m(n), every input vectors −→x ∈ Xm,−→y ∈ Y m, every z ∈ {0, 1}∗, and
every subset of corrupt parties M , the following

{
IDEALFM,Sim(λ,

−→x ,−→y , z)
}
λ∈N
≈c

{
REALFM,A(λ,

−→x ,−→y , z)
}
λ∈N

holds in the Gledger-hybrid model.

5.2.3 (Multi-slot) Extractable Commitment Protocol ⟨C,R⟩
Let Com(·) denote the commitment function of a non-interactive perfectly binding string commit-
ment scheme. Let λ denote the security parameter. The commitment scheme ⟨C,R⟩ between the
committer C and the receiver R is described as follows. Note that we have already described
Extractable Commitments schemes before (Section 4.2.2), but in this chapter we shall consider a
multi-slot notion. The notion in Section 4.2.2 can be considered to be a single-slot variant of this
notion.

Commit Phase: This consists of two stages, namely, the Init stage and the Challenge-Response
stage, described below:

INIT: To commit to a n-bit string σ, C chooses (ℓ · N) independent random pairs of n-bit strings
{α0

i,j , α
1
i,j}ℓ,Ni,j=1 such that α0

i,j ⊕ α1
i,j = σ for all i ∈ [ℓ], j ∈ [N]. C commits to all these strings using

Com, with fresh randomness each time. Let B ← Com(σ), and A0
i,j ← Com(α0

i,j), A
1
i,j ← Com(α1

i,j)
for every i ∈ [ℓ], j ∈ [N].

CHALLENGE-RESPONSE: For every j ∈ [N], do the following:
– Challenge : R sends a random ℓ-bit challenge string vj = v1,j , . . . , vℓ,j .

– Response : ∀i ∈ [ℓ], if vi,j = 0, C opens A0
i,j , else it opens A1

i,j by sending the decommitment
information.

Open Phase: C opens all the commitments by sending the decommitment information for each one
of them. R verifies the consistency of the revealed values. This completes the description of ⟨C,R⟩.

134

Notation. We introduce some terminology that will be used in the remainder of this work. We refer
to the committed value σ as the preamble secret. A sloti of the commitment scheme consists of the
i’th Challenge message from R and the corresponding Response message from C. Thus, in the above
protocol, there are N slots.

5.3 Black-box Zero Knowledge

In this section we will describe a ω(1) round zero-knowledge protocol that can be proven secure
using a black-box simulator. We start with a description of the graph hamiltonicity proof protocol,
and then build our protocol atop this protocol.

5.3.1 Graph Hamiltonicity Zero-knowledge Proof

As a starting point, we describe the the Hamiltonicity proof system [Blu87]. In the simplest setting,
the prover proves the existence of a Hamiltonian cycle in graph. The description of the protocol
can be found in figure 5.1.

Properties. The protocol is zero-knowledge when a single instance is run, and thus witness in-
distinguishable. Witness indistinguishability holds even when the protocol is run in parallel. In
addition, the above protocol satisfies the notion of special simulation, where the simulator can
trivially simulate the proof if it is aware of the verifier’s challenge. This, similar to witness indistin-
guishability, holds even when the protocol is run in parallel.

Roughly, the idea to simulate the protocol when we know the challenge prior to the first message
sent by the prover, is the following:

– If the challenge bit is 0, then commit to adjacency matrix of the permuted graph π(G).

– On the other hand, if the challenge bit is 1 commit to the complete graph Kλ.
It is easy to see that the conditions for the corresponding challenge is met by the verifier. It also
follows that the simulation holds when the protocol runs in parallel.

5.3.2 Our Protocol

The high level idea for our protocol is that the verifier commits to its challenge via the multi-round
extractable commitment described in section 5.2.3, and reveals the challenge in place of the second
round of the Hamiltonicity proof system. Since we are constructing a proof system where the prover
has unbounded computational power, we require the commitment by the verifier to be statistically
hiding so that an unbounded adversarial prover is not able to guess the challenge. We refer to the
multi-round extractable commitment as the preamble.

In the preamble, the challenge committed to by the verifier is retrieved by rewinding the veri-
fier in each of the slots. As long as the rewinding is successful in one of the slots, the committed
challenge can be extracted. But in the presence of the blockchain (abstracted by the Gledger function-
ality) this becomes difficult. Consider a verifier that sends the challenge received by the prover in a
given slot to Gledger, and waits for the state to expand to include the challenge before responding to
the challenge. It then checks in the state if there is another challenge from the prover for the same
slot. If this is the case, it knows that it has been rewound, and will abort the protocol. Thus, in the

135

Hamiltonicity proof system

Common Input: A directed graph G = (V,E) with λ
def
= |V |.

Auxiliary Input for Prover: a directed Hamiltonian, C ⊂ E, in G.

1. Select a random permutation π, of the vertices V and using a statistically binding
commitment scheme commit to the entries of the adjacency matrix of the permuted
graph.

2. The verifier uniformly selects a bit σ and sends it to the prover.

3. The prover sends a message based on the value of σ it receives:

– if σ = 0, the prover sends π along with the decommitment to all the values it
had committed to earlier.

– if σ = 1, the prover decommits only to entries in the permuted adjacency
matrix (π(u), π(v)) with (u, v) ∈ C.

4. The verifier first checks if all the values decommitted to by the prover are valid
(with respect to their corresponding commitment).

– if σ = 0, the verifier checks if the revealed graph is the original graph permuted
by π.

– if σ = 1, the verifier checks if all the revealed values on the matrix is 1 and
form a cycle.

The verifier accepts if and only if both the initial checks, and the checks correspond-
ing to the challenge verify .

Figure 5.1: Hamiltonicity proof system

simulated setting, the verifier will abort with a disproportionate probability in comparison to the
real execution.

The trivial solution of not relaying messages from the verifier to Gledger on the look ahead threads
does not work because the verifier can refuse to respond unless the state expands.

Thus, to overcome this issue, we design a protocol in the blockchain-hybrid model, where the
protocol requires all parties to access Gledger in order to participate in the protocol. In our protocol,
we just require that during the preamble, the local state of each party increases by at most k. But
since parties may have different views of thus state, we must be careful when we claim the state
size increase for other parties. But since Gledger guarantees that |stateP − stateV| ≤ windowSize, we
are guaranteed that if the size of the state of one party increases by k, the size of the state of any
other party can increase by at most windowSize+ k (with maximum when both parties point to the
head of the state initially).

If we set the number of rounds of the preamble to be m > k + windowSize, we are guaranteed
to have at least m − (k + windowSize) slots where the state does not expand during the slot. For

136

simplicity we assume k to be a constant, but our protocol can handle arbitrary k by scaling the
number of rounds accordingly. The high level idea then is to just rewind in the slots where the state
has not expanded, and thus the verifier does not expect the state to expand before it responds, and
thus messages to or from Gledger can be kept from the verifier on the look ahead threads. Of course
the exact number of rounds would depend on the exact simulator strategy. In our protocol, the
number of rounds in the preamble is set to be m = ω(1). We should point out that k > windowSize
to avoid trivial aborts in an honest execution of the protocol since otherwise the parties may start
off with states that may then be k behind the head of the state, and in one computation step catches
up to the head, thereby increasing local state size by k, and thus causing an abort. The complete
protocol is presented in Figure 5.2.

Theorem 17. The protocol BCA-ZK is a Zero-Knowledge Proof with black-box simulation in the Gledger-
hybrid model.

Completeness. The parameter k for protocol needs to be selected appropriately such that hon-
est provers do not “time-out” prior to completion of the first phase (PRS preamble). Once this
is ensured, the completeness of the protocol follows immediately from the completeness of the
underlying Hamiltonicity proof system. We set k to be a constant satisfying this property.

A honest prover sends random challenges in the first phase and performs appropriate checks. In
the second phase, it uses its witness to the statement to answer the verifier’s challenge.

Soundness. On a high level, soundness follows from the statistical hiding property of the commit-
ment scheme and the soundness of the underlying Hamiltonicity proof system. Because of statistical
hiding, other than with negligible probability, even an unbounded prover cannot break the hiding
of the commitment scheme. The values revealed by the verifier are randomly chosen strings, inde-
pendent of the the challenge string. Thus, other than with negligible probability, no information
about the challenge string is revealed by the end of Phase I. The rest of the protocol then relies on
the soundness of the Hamiltonicity proof system, which simply requires that the challenge from the
verifier is random and unknown to the prover.

For the reduction, we use prover P, breaking the soundness of our protocol, to construct a
prover PHC that breaks the soundness of the underlying Hamiltonicity proof system.
PHC behaves as follows:
– Commit to random challenge in the initial commitment for σ and likewise commits to 2mλ

random strings and send to P. From the statistical hiding property, P ’s view is indistinguish-
able when PHC commits to random strings.

– Respond to P ’s challenges honestly.

– Forward P ’s first message in Phase II to the external challenge verifier.

– Let the challenge verifier respond with be σ̃. We break the binding property of the the com-
mitment scheme to find decommitments that are consistent with σ̃. This applies to the initial
commitment and the unopened commitments in Phase I.

– Send these decommitments to the prover.

– When the prover sends the third message in Phase II, relay it to the external challenge verifier.
If P breaks soundness, so does PHC.

137

Protocol BCA-ZK

Common Input: An instance x of a language L with witness relation RL, the security param-
eter λ, the time out parameter k and the round parameter m := m(λ).

Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL, size of local state from the
ledger iP := |stateP|.
Auxiliary Input for Verifier: size of local state from the ledger iV := |stateV|.
Phase I: Prior to each message sent in this phase, the respective party checks if the size of the
state is such that |stateP| < iP + k (correspondingly |stateV| < iV + k for the verifier). If not,
the party aborts.

1. Prover uniformly select a first message for a two round statistically hiding commitment
scheme and send it to the verifier.

2. Verifier uniformly selects σ ∈ {0, 1}λ, and mλ pairs of λ-bit strings (σ0
ℓ,p, σ

1
ℓ,p) for ℓ ∈

[λ], p ∈ [m] such that ∀ℓ, p : σ0
ℓ,p ⊕ σ1

ℓ,p = σ. It commits to all 2mλ + 1 selected strings
using the statistically hiding commitment scheme. The commitments are denoted by
α, {αb

ℓ,p}b∈{0,1},ℓ∈[λ],p∈[m].

3. For p = 1 to m:

(a) Prover sends an λ-bit challenge string rp = r1,p, . . . , rλ,p to the verifier.

(b) Verifier decommits αr1,p
1,p , . . . , α

rλ,p

λ,p to σ
r1,p
1,p , . . . , σ

rλ,p

λ,p .

4. The prover proceeds with the execution if and only if all the decommitments send by the
verifier are valid.

Phase II: The prover and verifier engage in λ parallel executions of the Hamiltonicity protocol
as described below:

1. The prover sends the first message of the Hamiltonicity proof system.

2. The verifier decommits α to σ. And also reveals all mλ commitments not decommitted
to in the earlier phase.

3. The prover checks if decommitted values σ, {σb
ℓ,p}b∈{0,1},ℓ∈[λ],p∈[m] are valid decommit-

ments. Additionally, check if ∀ℓ, p : σ0
ℓ,p ⊕ σ1

ℓ,p = σ. If any of the checks fail, abort. Else,
send the third message of the Hamiltonicity proof system.

4. Verifier checks if all conditions of the Hamiltonicity proof system are met. It accepts if
and only if this is the case.

Figure 5.2: Protocol for zero-knowledge proof in the blockchain aware setting.

Thus with only negligible probability difference, PHC breaks the soundness of the Hamiltonincity
proof system.

We note that we need statistical hiding in Phase I because an all powerful prover should not

138

be able to guess the challenge bits. And we require statistical binding in the Hamiltonicity proof
in Phase II because we don’t want the prover to be able to break binding property to change the
adjacency matrix that it committed to.

Zero-knowledge. We need to construct a simulator Sim such that the following ensembles are
computationally indistinguishable in the Gledger-hybrid model

{
ViewV ⟨P(x,w),V(x, z)⟩

}
x∈L,w∈RL(x),z∈{0,1}∗

,
{
Sim(x, z)

}
x∈L,w∈RL(x),z∈{0,1}∗

.

We now describe the simulator in Figure 5.3.

Simulator Sim

1. Send the first message of the two round statistically hiding commitment scheme.

2. At any point in the simulation, if on the main thread the size of the state of either
the prover or verifier increases by k, then quit and output the view of the verifier.
Unless otherwise specified, the simulator relays messages between the Gledger and
the verifier.

3. For each p ∈ [m],

– Select a random challenge string for the main thread, and λ − 1 challenge
strings for the look-ahead threads. All the threads are run in parallel.

– On the look ahead thread, no messages to or from the Gledger are relayed.

– A slot on the look ahead thread terminates if the slot completes successfully, or
if the size of the local state increased after the threads were created (or if the
adversary aborts).

Note that there might be look-ahead threads from earlier slots running in parallel
while the main thread may have progressed further.

4. If in each of the look-ahead threads, the slot is terminated prior to completion (all
m · (λ− 1) of them), output ⊥rewind and exit.

5. Since the abort condition does not hold, other than with negligible probability, the
challenge string has been obtained. Use the challenge string to simulate Phase II of
the protocol.

Figure 5.3: Simulator for zero-knowledge proof in Gledger-hybrid model.

In order to prove zero-knowledge, we consider an intermediate simulator Sim1 that receives a
witness w to the statement x. Sim1 on input x,w, z proceeds identically to the honest execution
except that in Phase I, before the challenge message from the prover P in each slot, we sample λ−1
other challenge messages and fork look ahead threads to be run in parallel. Thus, there are a total
of m · (λ− 1) look ahead threads.

139

The main and look ahead threads are run in parallel. They are executed almost identically but
for the following difference: In the look ahead threads, none of the queries made to the Gledger are
forwarded to the Gledger. As described in section 2.14, the READ queries to Gledger are simulated
within each thread without having to query Gledger. In addition, the look ahead threads are run until
either a block is created, or the slot completes, whichever happens first (the adversary may also
abort).

At the completion of Phase I, if none of the slots on the look ahead thread completed before be-
ing terminated, output ⊥rewind. (i.e. for none of the slots look ahead thread completed successfully
with a response from the verifier.)

We note that to optimize the simulator, we can stop creation of look ahead threads if at any
point a look ahead thread successfully completes its slot. But for simplicity of exposition, we do not
do so here.

Now, we claim the following:

Claim 72. The following are statistically indistinguishable in the Gledger-hybrid model:
{
ViewV ⟨P(x,w),V(x, z)⟩

}
x∈L,w∈RL(x),z∈{0,1}∗

,
{
Sim1(x,w, z)

}
x∈L,w∈RL(x),z∈{0,1}∗

Proof. Since the main thread remains unchanged and the only difference is the creation of look
ahead threads, all we need to argue is that ⊥rewind is output with negligible probability. To this end,
we make the following additional claim.

Claim 73. The probability with which Sim1 outputs ⊥rewind is negligible.

Proof. We prove this by contradiction. Assume that the probability is noticeable. We note that Sim1

outputs ⊥rewind only if Phase I completes, and in all the look ahead threads, the simulator is forced
to terminate it before it completes (i.e. if the size of the state increased before the look ahead
threads were completed). It should be noted that since the adversary (with restrictions) controls
when the state expands, it could potentially attempt to cause the state to increase at different rates
in the look ahead thread. This makes no difference to the analysis since this can just be thought of
as the adversary waiting for the state to expand before completion of the slot. For ease of notation,
we shall call a slot good if the state did not expand after the slot started, and before its completion.
This can refer to either a slot in the main thread, or in the look ahead thread. Thus, by this notation,
Sim1 outputs ⊥rewind only if the preamble completes and none of the slots on the look ahead threads
are good.

To prove this, we shall consider yet another intermediate simulator Sim′
1. It is identical to

Sim1, but instead of picking the main thread challenge, and then the look-ahead challenges, pick λ
random strings and assign one of them to be the main thread challenge, and the remaining strings
will be challenges on the look ahead thread. (The only difference is that in this case is that the main
challenge is decided randomly from a set of challenges, as opposed to fixing a main thread and then
choosing the look ahead threads.) Hence the probability that Sim′

1 outputs ⊥rewind is identical to the
probability that Sim1 outputs ⊥rewind.

To recall, Sim′
1 outputs ⊥rewind if both the following conditions hold:

– k′ = (k+windowSize) blocks are not mined prior to completion of Phase I on the main thread.
This ensures that at least m− k′ slots on the main thread are good.

– For each p ∈ [m], every look ahead slot is not good.

140

Now let us look at the probability with which this happens. If the Phase I does not abort, then
we know that there are at least m− k slots on the main thread T that are good. And for the failure
condition to be met, all the look-ahead slots at the same position terminate before completion (as
the state expanded before it completed). Thus given the view prior to the slot, the corresponding
good slot was chosen with probability 1/λ. We can repeat this analysis for each such good slot
on the main thread. Given that we choose the random string to be the main thread challenge
independently for each p ∈ [m], for any choice of m strings of length λ each we get:

Pr
[
Sim′

1 outputs ⊥rewind

]
≤ 1

λm−k
≤ λk · negl(λ) (5.1)

when m = ω(1).
Thus, from our assumption that k is a constant, we get the probability that Sim′

1 outputs ⊥rewind

to be negligible. This is also gives us the requirement that the number of rounds in the protocol
must be ω(1).

This gives us a contradiction to our assumption that the probability with which Sim1 outputs
⊥rewind is non-negligible.

Now in the last step, the only change from Sim1 is that we use the special simulation prop-
erty of Hamiltonicity proof system. Now this becomes identical to our described simulator. View
indistinguishability follows trivially as a consequence. Thus we get the following claim.

Claim 74. The following are computationally indistinguishable in the Gledger-hybrid model:
{
Sim1(x,w, z)

}
x∈L,w∈RL(x),z∈{0,1}∗

and
{
Sim(x,w, z)

}
x∈L,w∈RL(x),z∈{0,1}∗

5.4 Concurrent Self Composable Secure Computation

In this section, we will construct a two-party protocol that is secure under concurrent self compo-
sition. We follow the line of works [CGJ15, GGJ13, GJO10] that rely on realizing an extractable
commitment scheme that remains extractable even when there are multiple concurrent copies of
this scheme in execution. Thus we construct our protocol in a two-step process. First, we describe
a modified version of the multi-round extractable commitment preamble in the blockchain-hybrid
model and show that we can extract from each session when multiple sessions are executed con-
currently. Next, we plug our constructed concurrently extractable commitments into the compilers
constructed in [CGJ15, GGJ13, GJO10] to achieve a concurrently secure two-party computation
protocol.

5.4.1 Concurrently Extractable Commitment

In this section we present our construction of the concurrently extractable commitment scheme in
the blockchain-hybrid model. We will refer to this as the modified PRS preamble. The idea for the
modified PRS preamble is quite simple. Prior to starting the preamble, the party needs to post the
first message to Gledger. It is guaranteed that it will appear in the view of every party within the next
∆ := 4 · windowSize blocks. Once the local state increase by ∆ blocks, it sends the same message to
the receiver. Posting to Gledger gives the party an “expiry period” of k-blocks after the ∆ wait i.e., all

141

slots of the preamble must be completed before the size of the state increases by a total of ∆ + k.
As in the case of zero-knowledge, if the size of the state of a party increases by ∆+ k, for any other
party the size of the state can have increased by at most ∆ + k + windowSize, which is a constant
when k is a constant. This needs to be taken into account when choosing the parameters ℓ and k.
The formal description of the protocol is given below.

Protocol ⟨C,R⟩BCA

Common Input: The security parameter λ, the time-out parameter k, and the round parame-
ter 2 · ℓ := ℓ(λ).

Input to the Committer: the value σ to be committed, size of local state from the ledger
iC := |stateC |.
Input to the Receiver: size of local state from the ledger iR := |stateR|.
Commitment:

1. Committer uniformly selects σ ∈ {0, 1}λ, and 2 · ℓ · λ pairs of λ-bit strings (σ0
ℓ,p, σ

1
ℓ,p)

for ℓ ∈ [λ], p ∈ [2 · ℓ] such that ∀ℓ, p : σ0
ℓ,p ⊕ σ1

ℓ,p = σ. It generate commitments to all
2(2 · ℓ) · λ + 1 selected strings using the statistically binding commitment scheme. The
commitments are denoted by α, {αb

ℓ,p}b∈{0,1},ℓ∈[λ],p∈[2·ℓ]. Send a SUBMIT query of these
commitments to Gledger. By our assumption, these will be guaranteed to appear in every
party’s state (at the same position) when |stateC | = iC + ∆. Let it appear in index i of
the state.

2. The committer sends to receiver the commitments along with the index i of the state that
it appears in. The receiver verifies if the commitments were indeed in the designated
index of the state.

3. Prior to each message subsequently sent, the respective party checks if the size of the
state is such that |stateR| < iR + k + ∆ (correspondingly |stateC | < iC + k + ∆ for the
committer). If not, the party aborts.

For p = 1 to m:

(a) Receiver sends an λ-bit challenge string rp = r1,p, . . . , r1λ,p to the committer.

(b) Committer decommits αr1,p
1,p , . . . , α

rλ,p

λ,p to σ
r1,p
1,p , . . . , σ

rλ,p

λ,p .

5.4.2 Simulation-Extraction Strategy

In this section, we will describe a simulation-extraction strategy. The goal of this strategy is to
extract the value committed by an adversary in every session of multiple concurrent executions of
the modified preamble described above. We present a new concurrent strategy where our starting
point is the simulator described in [GLP+15]. The relevant description has been reproduced here.

The scheduling of messages is controlled by the adversary A∗, and when A∗ sends the p-th
message of a session s, it immediately receives the next message of s. The only exception to this
are the special messages relevant to the Gledger. In this case, A∗ sends a message to Gledger, and can
proceed with the other parts of the execution. Once Gledger sends a message to A∗, A∗ immediately

142

receives it. This is not universal across all queries to Gledger since a READquery is immediately
responded to by Gledger, and needs to be handled accordingly.

The state of A∗ at any given point consists of its view up to that point. The starting state of
A∗ is denoted by sta0, which is its state before it receives its first message. In addition, LIVE(sta)
denotes the set of live sessions when the execution is at the state sta. When the preamble starts, A∗

sends a START along with its commitment, and on successful completion of the preamble expects
a message of the form (END, α) from the simulator. As described in [GLP+15], we will require this
to be the value A∗ committed in preamble.

The simulator Sim receives as auxiliary input a string z ∈ {0, 1}∗, and the security parameter
λ. It incorporates A∗ as a black-box, and let T = T (λ) be the maximum number of sessions (of
the modified preambles) that are started by A∗. Unlike the setting described in [GLP+15], the
external messages refer to those from Gledger. We let the execution on look ahead threads proceed
when the adversary has sent a message to Gledger without forwarding the query, and only abort the
thread when the size of the state increases. Recall, from the description of Gledger, the adversary
also receives SUBMIT messages every time an honest party submits something to Gledger. These are
passed on to A∗ on both the main and look ahead threads. This stems from the fact that these
can be replayed in each thread of execution. On the look ahead thread, when A∗ makes read
queries, we follow the strategy outlined in the model in section 2.14. These READ queries are
answered local to a thread without having to pass on queries to Gledger as follows: The adversary,
and thus the simulator, is aware of the transactions/data sent by honest parties since Gledger sends
them to the adversary as and when they arrive. These messages can be replayed within threads.
For the transactions/data sent by the adversary, the simulator maintains a local buffer for each
thread, collecting but not forwarding these queries. When the look ahead threads make a READ
query, combine the state from the start of the thread (since we have not aborted the thread, we’re
guaranteed that the state hasn’t expanded), the honest SUBMIT queries along with the SUBMIT
queries sent by the adversary only local to that thread. It is crucial to note that we do not make
any changes to state.

Sim starts by setting (1λ, z) on A∗’s input tape, and a sufficiently long uniform string on its
random tape. Sim then starts the recurse procedure:

(sta, T)← extract(2 · ℓ · T, sta0, ∅, 1, ∅, 0)

The terminology used in the recurse procedure are:
– t is the block length (of a block of recursion), and the base case will occur when t = 1.

– sta refers to the starting state.

– T refers to the table containing solutions.

– f is used to denote if the execution lies on the main thread. f = 1 if and only if the block lies
on the main thread of execution.

– aux refers to auxiliary tables that are used in special cases (see [GLP+15] for details).

– id refers to the identity of a block of execution used to uniquely identify it.
Throughout its execution, messages of recurse are forwarded back and forth between Gledger and

A∗. The final output of Sim is the first output of recurse, namely sta which is also known as the
main thread of execution.

143

Procedure recurse(t, sta, T , f, aux, id)

1. If t = 1, repeat the following keeping in mind that if at any point, a session “expires”
(state size has increased by k +∆ since session information posted to Gledger), abort the
session:

(a) If the next message is START, check if relevant information is in the state and start
a new session s.

– send r ←$ {0, 1}n as the challenge of the first slot of s.
– add entry (s : 1, r,) to T .

(b) If the next message is the slot-i challenge of an existing session s.

– send r ←$ {0, 1}n as the slot-i challenge of s.
– add entry (s : i, r,) to T .

(c) If the next message is the slot-i response, say γ, of an existing session s.

– If γ is a valid message.
– update entry (s : i, r,) to (s : i, r, γ).
– if i = 2 · ℓ, i.e., it is the last slot, send (END, extract(s, id, T , aux)).

– Otherwise, if γ =⊥, abort session s and add (s :⊥,⊥,⊥) to T .
– Update sta to be the current state of A∗

– return (sta, T).
(d) If the next message is a message from A∗ to the Gledger

– If READ message, drop the message, simulate the READ response (as de-
scribed) and continue.

– If f = 0, i.e., it is a look ahead block, then drop the message (stop it from
reaching Gledger) and continue.

– If f = 1, i.e., it is the main thread, then forward the message to Gledger, and
continue.

(e) If the next message is an expanded state from the Gledger to A∗

– If f = 0, i.e., it is a look ahead block, then return (sta, T).
– If f = 1, i.e., it is the main thread, do the following:

– Update sta to be the current state of A∗

– For every live session s ∈ LIVE(sta), do the following:
– ×s,id = true

– for every block id′ that contain the block id, set ×s,id′ = true.

(f) If other messages from Gledger, pass to A∗ and continue.

2. If t > 1,

Rewind the first half twice

(a) (sta1, T1)← recurse(t/2, sta, T , 0, aux, id ◦ 1) [look-ahead block C ′]

(b) Let aux2 := (aux, T1 \ T),
(sta2, T2)← recurse(t/2, sta, T , f, aux2, id ◦ 2) [main block C]

144

Rewind the second half twice

(c) Let T ∗ := T1 ∪ T2,
(sta3, T3)← recurse(t/2, sta2, T ∗, 0, aux, id ◦ 3) [look-ahead block D′]

(d) Let aux2 := (aux, T1 \ T),
(sta4, T4)← recurse(t/2, sta2, T ∗, f, aux4, id ◦ 4) [main block D]

(e) return (sta4, T3 ∪ T4).

Procedure extract(s, id, T , aux)

1. Attempt to extract a value for s from T .

2. If extraction fails, consider every block id1 for which ×s,id1 = true.

– Let id′1 be the sibling of id1, with input/output tables Tin, Tout respectively.

– Attempt to extract from auxid′1 := Tout \ Tin; (included in aux).

3. If all attempts fail, abort the simulation and return ExtractFail.

Otherwise return the extracted value.

Although we describe the simulator in terms of a recursive rewinding strategy, to ensure that
the adversary does not gain any side channel leakage in the form of increase of state size for the
state in Gledger, all threads are run in parallel. The total number of threads is given by the recursion
h(2 · ℓ · T (λ)) ≤ 4 · h(ℓ · T (λ)) which gives us h(2 · ℓ · T (λ)) ≤ (ℓ · T (λ))2poly(n) threads. Thus if the
total number of sessions and slots are polynomial, we have only polynomial many threads. And by
our assumption of the simulator having access to arbitrary polynomial parallelism, we can run this
threads in parallel.

Claim 75. Sim succeeds other than with negligible probability.

To prove this claim, we shall rely on the following robust extraction lemma. Informally, the
lemma states that there exists a simulator that can extract the commitment made by the adversary
without having to rewind an external protocol Π. The lemma states this by describing an online
extractor E which can run in super-polynomial time to extract the committed value. We refer the
reader to [GLP+15] for further details.

Lemma 5 (Robust Extraction Lemma [GLP+15]). There exists an interactive Turing Machine Sim
(“robust simulator”) such that for every A∗, for every Π = ⟨B,A⟩, there exists a party E (“online
extractor”), such that for every λ ∈ N, for every x ∈ domB(λ), and every z ∈ {0, 1}∗, the following
conditions hold:

1. Validity constraint. For every output ν of REALA
∗

E,Π(λ, x, z), for every PRS preamble s (appear-
ing in ν) with transcript τs, if there exists a unique value v ∈ {0, 1}λ and randomness ρ such
that openPRS(τs, v, ρ) = 1, then

αs = v,

where αs is the value E sends at the completion of preamble s.

145

2. Statistical simulation. If k = k(λ) and ℓ = ℓ(λ) denote the round complexities of Π and the
PRS preamble respectively, then the statistical distance between distributions REALA

∗

E,Π(λ, x, z)

and outs
〈
B(1λ, x),SimA∗

(1λ, z)
〉

is given by:

∆(n) ≤ 1

2Ω(ℓ−k·logT (n))
,

where T (n) is the maximum number of total PRS preambles between A∗ and E . Further the
running time of Sim is poly(λ) · T (n)2.

The reason the lemma doesn’t directly apply to our setting is that there needs to be a “gap”
between the number of slots of the preamble and the number of external messages. For instance,
if the number of external messages are constant and the number of slots super-constant, we get a
simulator that fails with negligible probability. Unfortunately in our setting, we can loosely upper
bound the number of external state expansion messages by T · k, which is no longer a constant.

To see why this our previous point about simulating the buffer is important important, each
READ query and its corresponding response from Gledger will count as an external message by our
definition. Since there is no prior bound on the number of such queries the adversary can make,
we cannot hope to use the approaches listed above directly.

The proof of the above claim follows an argument of contradiction. Assume there is an adversary
A for which the above simulator Sim fails, we shall construct using A and Sim, a new adversary Ã
such that there are only a constant number of external messages, but the simulator S̃im described
in [GLP+15] fails with noticeable probability, thus violating the robust extraction lemma.

As a matter of technicality, and for ease of proof, the adversaries A and Ã participate in slightly
different preambles. A participates in preambles that have 2 · ℓ slots, while Ã participates in pream-
bles that have only ℓ slots. Thus, care must be taken when we Ã forwards messages from A.

Before we describe the constructed adversary, Ã, we introduce some notation. Let stai be the
state of the adversary A on the main thread, when the STARTi message is sent on this thread. We
partitions the set LIVE(stai) into two sets HALF(stai) and HALFc(stai) = LIVE(stai) \ HALF(stai),
where HALF(stai) is the set of all preambles that have completed at least half (ℓ) of their slots (but
not all of them since they’re in LIVE(stai)). Intuitively, these preambles for these sessions already
contain enough information on the tables generated by Sim, and thus there is no need to forward
them to S̃im.

Recall, in the preamble, the first message that is sent along with START, is the commitment to v
and 2 · ℓ ·λ pairs

(
v0i1,i2 , v

1
i1,i2

)
for , i1 ∈ [2 · ℓ], i2 ∈ [λ] such that ∀i1 ∈ [2 · ℓ], i2 ∈ [λ] v0i1,i2⊕v1i1,i2 = v.

We denote this message for a session u to be ExtComu. Additionally, we denote by ExtComu[p : p+i3]
for p + i3 ≤ 2 · ℓ, the (truncated) commitment consisting of the commitment to v as before and of
(i3 + 1) · λ pairs

(
v0i1,i2 , v

1
i1,i2

)
for i1 ∈ [p, p+ i3] , i2 ∈ [λ]. Thus ExtComu = ExtComu[1 : 2 · ℓ].

Consider session j ∈ HALFc(stai). Let pij be the slot of session j for which A received a chal-
lenge, but did not send a response. i.e. pij − 1 slots were completed in session j. Given that
j ∈ HALFc(stai), we have 1 ≤ pij ≤ ℓ. We will use ExtComu[p

i
j + 1 : pij + ℓ] as the preamble

commitment for Ã. This leaves slots pij + ℓ + 1 to 2 · ℓ when pij < ℓ that need to be dealt with
appropriately.

Given the notation and the idea described, we construct the adversary Ã as follows:

146

adversary Ã(1λ, z)

1. Guess the slot î for which the simulator Sim fails to extract from A.

2. Initialize Sim with random coins and auxiliary input z. Sim will in turn initialize A to
use in a black-box manner.

3. Prior to Ã sending out any messages, it executes the interaction between A and Sim up
to the point that A sends STARTî on the main thread. It does so by relaying messages
between Sim and A in each parallel execution till A outputs STARTî. During the execu-
tion of the interaction between Sim and A, if Sim send messages to the Gledger, Ã sends
this message too. When Ã receives a state expansion message from the Gledger, this is
forwarded to Sim.

4. On receiving STARTî and the corresponding ExtComî,

output STARTî and ExtComî[1 : ℓ]

forward response received to A.

5. For all other messages, the behavior is defined as follows:

– If the next message from A is a STARTj message for session j,
output STARTj and ExtComj [1 : ℓ]

forward response received to A.

– If the next message from A is the slot-p response, say γ, of session j.

– If j ∈ HALF(stâi) //sessions with at least half the slots completed
– if p < 2 · ℓ

respond internally with the challenge for slot p+ 1.
– if p = 2 · ℓ //last slot of the main preamble

use Sim’s extract procedure to extract the value vj committed in session
j.

respond with (ENDj , vj)

– If j ∈ HALFc(stâi) //sessions with at least half the slots remaining

– if p = p̂ij ,
output STARTj and ExtComj [p+ 1 : p+ ℓ].
forward response received to A.

– if p̂ij < p < p̂ij + ℓ,
output γ.
forward response received to A.

– if p = p̂ij + ℓ, //last slot of modified preamble
output γ.
on receiving (ENDj , ṽj), store ṽj and respond internally with the chal-
lenge for slot p+ 1.

– if p̂ij + ℓ < p < 2 · ℓ,
respond internally with the challenge for slot p+ 1.

147

– if p = 2 · ℓ, //last slot on main preamble
use the stored value ṽj and respond with (ENDj , ṽj).

– If j /∈ LIVE(stâi) #sessions started after (and including) session î

– if p < ℓ,
output γ.
forward response received to A.

– if p = ℓ, //last slot of modified preamble
output γ.
on receiving (ENDj , ṽj), store ṽj and respond internally with the chal-
lenge for slot p+ 1.

– if ℓ < p < 2 · ℓ,
respond internally with the challenge for slot p+ 1.

– if p = 2 · ℓ, //last slot on main preamble
use the stored value ṽj and respond with (ENDj , ṽj).

– If the next message from A is a message to Gledger, output this query.

– On receiving state expansion message from the Gledger, forward to A.

6. Quit on receiving response to the last slot in session î.

∈ HALF(stâi)

> ℓ

∈ HALFc(stâi)
< ℓ ℓ

î

/∈ LIVE(stâi)

A sends STARTî A responds to last slot of session î

Figure 5.4: We illustrate above the different types of sessions as described earlier, where the slots
are colored to indicate how Ã deals with them: (i) - the responses to these slots are obtained by
passing messages between A and Sim; (ii) - the responses to these slots to A are answered in-
ternally by Ã generating a random challenge and discarding the response without passing message
to Sim; (iii) - Ã exposes these slots to the external S̃im, by conveying challenges and responses
between S̃im and A (note that only ℓ such slots exist in each session); and (iv) - these slots are
never run since Ã stops once the last slot response of session î is received.

148

Figure 5.4 provides an illustration of the strategy employed by Ã. At a high level, Ã does not
make any calls to Sim once A sends STARTî. For the sessions in HALF(stâi), we rely on the fact
that Sim has responses for at least half the slots in these sessions - enabling it to extract since
any constant fraction of sessions should allow Sim to extract. Due to the time-out mechanism,
there can only be a constant number of external messages once A sends STARTî. We would like
to make a minor technical note at this point. While we stated that we wanted an adversary Ã
that receives only a constant number of external messages (state expansion messages from Gledger),
prior to Ã sending any messages for the session, it waits for some additional external messages.
Unfortunately, these may not be a constant. But, this makes little difference as the “core” of the
transcript still contain only a constant number of external messages, and rewinding at these points
do not affect the external messages sent early on.

5.4.3 The Protocol

In this section, we describe our concurrent secure computation protocol Π in the Gledger-hybrid
model for a general functionality F . Our protocol is, in fact, the same as the one presented
in [GJO10, GGJ13, CGJ15], except that we use the concurrently extractable commitment from
Section 5.4.1. Indeed, the core ingredient of the compiler in [GJO10] (which is also used in
[GGJ13, CGJ15]) is a concurrently extractable commitment, and in particular, it follows from these
works that if there exists a concurrent simulator for the extractable commitment, then the resultant
compiled protocol securely evaluates the function F .

For completeness, we recall the protocol here. The proof of security for our case follows in
essentially an identical fashion to [GJO10] with the main difference being that our simulator only
performs a single ideal world query per session (while the simulator performs multiple ideal world
queries per session in their work). We discuss other minor differences in Section 5.4.3.2.

5.4.3.1 Building Blocks

Statistical Binding String Commitments. We will use a (2-round) statistically binding string
commitment scheme, e.g., a parallel version of Naor’s bit commitment scheme [Nao91] based on
one-way functions. For simplicity of exposition, however, in the presentation of our results, we
will use a non-interactive perfectly binding string commitment. Let Com(·) denote the commitment
function of the string commitment scheme.

Statistical Witness Indistinguishable Arguments. We shall use a statistically witness indis-
tinguishable (SWI) argument ⟨Pswi, Vswi⟩ for proving membership in any NP language with per-
fect completeness and negligible soundness error. Such a scheme can be constructed by using
ω(log k) copies of Blum’s Hamiltonicity protocol [Blu87] in parallel, with the modification that the
prover’s commitments in the Hamiltonicity protocol are made using a statistically hiding commit-
ment scheme [NOVY98, HHK+05].

Specifically, in our discussion of the Blum Hamiltonicity protocol (Section 5.3.1), the prover
used a statistically binding commitment to commit to the (permuted) graph. This ensured that
the resultant protocol was a proof. If one were to replace the commitment with a commitment
scheme that was statistically hiding but computationally binding, then we have a statistical zero-
knowledge argument (as opposed to a computational zero knowledge proof) where the soundness

149

is 1/2. By [FS90] since (i) every zero-knowledge protocol is also witness indistinguishable while
maintaining the corresponding security property (i.e. computational/statistical/perfect); and (ii)
composes under parallel repetition; we have that ω(log k) parallel repetitions brings the soundness
error to be negligible while maintaining statistical witness indistinguishability.

Semi-Honest Two Party Computation. We will also use a semi-honest two party computation
protocol ⟨P sh

1 , P sh
2 ⟩ that emulates the ideal functionality F in the stand-alone setting. The existence

of such a protocol ⟨P sh
1 , P sh

2 ⟩ follows from [Yao86, GMW87a, Kil88].

Concurrent Non-Malleable Zero Knowledge Argument. Concurrent non-malleable zero knowl-
edge (CNMZK) considers the setting where a man-in-the-middle adversary is interacting with sev-
eral honest provers and honest verifiers in a concurrent fashion: in the “left” interactions, the adver-
sary acts as verifier while interacting with honest provers; in the “right” interactions, the adversary
tries to prove some statements to honest verifiers. The goal is to ensure that such an adversary
cannot take “help” from the left interactions in order to succeed in the right interactions. This
intuition can be formalized by requiring the existence of a machine called the simulator-extractor
that generates the view of the man-in-the-middle adversary and additionally also outputs a witness
from the adversary for each “valid” proof given to the verifiers in the right sessions.

Barak, Prabhakaran and Sahai [BPS06] gave the first construction of a concurrent non-malleable
zero knowledge (CNMZK) argument for every language in NP with perfect completeness and negli-
gible soundness error. In our construction, we will use a specific CNMZK protocol, denoted ⟨P, V ⟩,
based on the CNMZK protocol of Barak et al. [BPS06] to guarantee non-malleability. Specifically,
we will make the following two changes to Barak et al’s protocol: (a) Instead of using an ω(log n)-
round extractable commitment scheme [PRS02], we will use the N -round extractable commitment
scheme ⟨C,R⟩ (described in Section 5.2.3). (b) Further, we require that the non-malleable com-
mitment scheme being used in the protocol be public-coin w.r.t. receiver2. We now describe the
protocol ⟨P, V ⟩.

Let P and V denote the prover and the verifier respectively. Let L be an NP language with
a witness relation R. The common input to P and V is a statement x ∈ L. P additionally has
a private input w (witness for x). Protocol ⟨P, V ⟩ consists of two main phases: (a) the preamble
phase, where the verifier commits to a random secret (say) σ via an execution of ⟨C,R⟩ with the
prover, and (b) the post-preamble phase, where the prover proves an NP statement. In more detail,
protocol ⟨P, V ⟩ proceeds as follows.

PREAMBLE PHASE.
1. P and V engage in execution of ⟨C,R⟩ (Section 5.2.3) where V commits to a random string

σ.
POST-PREAMBLE PHASE.

2. P commits to 0 using a statistically-hiding commitment scheme. Let c be the commitment
string. Additionally, P proves the knowledge of a valid decommitment to c using a statistical
zero-knowledge argument of knowledge (SZKAOK).

2The original NMZK construction only required a public-coin extraction phase inside the non-malleable commitment
scheme. We, however, require that the entire commitment protocol be public-coin. We note that the non-malleable commit-
ment protocol of [DDN91] only consists of standard perfectly binding commitments and zero knowledge proof of knowledge.
Therefore, we can easily instantiate the DDN construction with public-coin versions of these primitives such that the resultant
protocol is public-coin.

150

3. V now reveals σ and sends the decommitment information relevant to ⟨C,R⟩ that was exe-
cuted in step 1.

4. P commits to the witness w using a public-coin non-malleable commitment scheme.

5. P now proves the following statement to V using SZKAOK:

(a) either the value committed to in step 4 is a valid witness to x (i.e., R(x,w) = 1, where w
is the committed value), or

(b) the value committed to in step 2 is the trapdoor secret σ.

P uses the witness corresponding to the first part of the statement.

Remark 13. We discussed above how one can repeat the Blum Hamiltonicity protocol with statisti-
cally hiding commitments to achieve SWI. If one were to repeat the Hamiltonicity protocol with sta-
tistically hiding commitments sequentially then we have a statistical zero-knowledge argument since
zero-knowledge protocols compose sequentially. The Blum Hamiltonicity protocol is also an argument
of knowledge since an extractor can obtain a witness from any two accepting transcripts.

Modified Extractable Commitment Scheme ⟨C ′, R′⟩ Due to technical reasons, in our secure com-
putation protocol, we will also use a minor variant, denoted ⟨C ′, R′⟩BCA, of the extractable commit-
ment scheme presented in 5.4.1. Protocol ⟨C ′, R′⟩BCA is the same as ⟨C,R⟩BCA, except that for a
given receiver challenge string, the committer does not “open” the commitments, but instead sim-
ply reveals the appropriate committed values (without revealing the randomness used to create the
corresponding commitments). More specifically, in protocol ⟨C ′, R′⟩BCA, on receiving a challenge
string vj = v1,j , . . . , vℓ,j from the receiver, the committer uses the following strategy: for every
i ∈ [ℓ], if vi,j = 0, C ′ sends α0

i,j , otherwise it sends α1
i,j to R′. Note that C ′ does not reveal the

decommitment values associated with the revealed shares.
When we use ⟨C ′, R′⟩BCA in our main construction, we will require the committer C ′ to prove

the “correctness” of the values (i.e., the secret shares) it reveals in the last step of the commitment
protocol. In fact, due to technical reasons, we will also require the the committer to prove that the
commitments that it sent in the first step are “well-formed”.

We remark that the extraction proof for the simulation-extraction procedure also holds for the
⟨C ′, R′⟩BCA commitment scheme.

5.4.3.2 Protocol Description

Notation. Let Com(·) denote the commitment function of a non-interactive perfectly binding com-
mitment scheme. Let ⟨C,R⟩BCA denote the N -round extractable commitment scheme and ⟨C ′, R′⟩BCA
be its modified version as described above. For the description, we drop the subscript and refer to
them as ⟨C,R⟩ and ⟨C ′, R′⟩ respectively. Let ⟨P, V ⟩ denote the modified version of the CNMZK
argument of Barak et al. [BPS06]. Further, let ⟨Pswi, Vswi⟩ denote a SWI argument and let ⟨P sh

1 , P sh
2 ⟩

denote a semi-honest two party computation protocol ⟨P sh
1 , P sh

2 ⟩ that securely computes F in the
stand-alone setting as per the standard definition of secure computation.

Let P1 and P2 be two parties with inputs x1 and x2. Let n be the security parameter. The
protocol proceeds as follows.

151

Protocol BCA-CONC

I. Trapdoor Creation Phase.
1. P1 ⇒ P2 : P1 creates a commitment com1 = Com(0) to bit 0 and sends com1 to P2. P1 and

P2 now engage in the execution of ⟨P, V ⟩ where P1 proves that com1 is a commitment to
0.

2. P2 ⇒ P1 : P2 now acts symmetrically. That is, it creates a commitment com2 = Com(0)
to bit 0 and sends com2 to P1. P2 and P1 now engage in the execution of ⟨P, V ⟩ where
P2 proves that com2 is a commitment to 0.

Informally speaking, the purpose of this phase is to aid the simulator in obtaining a “trapdoor”
to be used during the simulation of the protocol.

II. Input Commitment Phase. In this phase, the parties commit to their inputs and random
coins (to be used in the next phase) via the commitment protocol ⟨C ′, R′⟩.

1. P1 ⇒ P2 : P1 first samples a random string r1 (of appropriate length, to be used as P1’s
randomness in the execution of ⟨P sh

1 , P sh
2 ⟩ in Phase III) and engages in an execution of

⟨C ′, R′⟩ (denoted as ⟨C ′, R′⟩1→2) with P2, where P1 commits to x1∥r1. Next, P1 and
P2 engage in an execution of ⟨Pswi, Vswi⟩ where P1 proves the following statement to P2:
(a) either there exist values x̂1, r̂1 such that the commitment protocol ⟨C ′, R′⟩1→2 is valid
with respect to the value x̂1∥r̂1, or (b) com1 is a commitment to bit 1.

2. P2 ⇒ P1 : P2 now acts symmetrically. Let r2 (analogous to r1 chosen by P1) be the
random string chosen by P2 (to be used in the next phase).

Informally speaking, the purpose of this phase is aid the simulator in extracting the adversary’s
input and randomness.

III. Secure Computation Phase. In this phase, P1 and P2 engage in an execution of ⟨P sh
1 , P sh

2 ⟩
where P1 plays the role of P sh

1 , while P2 plays the role of P sh
2 . Since ⟨P sh

1 , P sh
2 ⟩ is secure only

against semi-honest adversaries, we first enforce that the coins of each party are truly random,
and then execute ⟨P sh

1 , P sh
2 ⟩, where with every protocol message, a party gives a proof using

⟨Pswi, Vswi⟩ of its honest behavior “so far” in the protocol. We now describe the steps in this
phase.

1. P1 ↔ P2 : P1 samples a random string r′2 (of appropriate length) and sends it to P2.
Similarly, P2 samples a random string r′1 and sends it to P1. Let r′′1 = r1 ⊕ r′1 and
r′′2 = r2 ⊕ r′2. Now, r′′1 and r′′2 are the random coins that P1 and P2 will use during the
execution of ⟨P sh

1 , P sh
2 ⟩.

2. Let t be the number of rounds in ⟨P sh
1 , P sh

2 ⟩, where one round consists of a message from
P sh
1 followed by a reply from P sh

2 . Let transcript T1,j (resp., T2,j) be defined to contain
all the messages exchanged between P sh

1 and P sh
2 before the point P sh

1 (resp., P sh
2) is

supposed to send a message in round j. For j = 1, . . . , t:

(a) P1 ⇒ P2 : Compute β1,j = P sh
1 (T1,j , x1, r

′′
1) and send it to P2. P1 and P2 now

engage in an execution of ⟨Pswi, Vswi⟩, where P1 proves the following statement:

152

i. either there exist values x̂1, r̂1 such that (a) the commitment protocol
⟨C ′, R′⟩1→2 is valid with respect to the value x̂1∥r̂1, and (b) β1,j =
P sh
1 (T1,j , x̂1, r̂1 ⊕ r′1)

ii. or, com1 is a commitment to bit 1.

(b) P2 ⇒ P1 : P2 now acts symmetrically.

Proof of Security. Our proof of security follows in almost an identical fashion to [GJO10, GGJ13,
CGJ15]. The main difference is that due to the property of our concurrent extractor (Section 5.4.2),
our simulator only needs to make one ideal world query per session (as opposed to multiple ideal
world queries). Indeed, this is why we achieve standard concurrent security, while [GJO10, GGJ13,
CGJ15] achieve security in the so-called multiple-ideal-query model.

Our indistinguishability hybrids also follow in the same manner as in [GJO10, GGJ13, CGJ15].
There is one minor difference that we highlight. The hybrids of [GJO10, GGJ13, CGJ15] maintain
a “soundness invariant”, where roughly speaking, it is guaranteed that whenever an honest party
changes its input in any sub-protocol used within the secure computation protocol, the value com-
mitted by the adversary in the non-malleable commitment (inside the CNMZK) does not change,
except with negligible probability. In some hybrids, this property is argued via extraction from the
non-malleable commitment.

In our setting, we have to be careful with such an extraction since a blockchain-active adversary
may try to keep state using Gledger. However, the key point is that for such a soundness argument,
the reduction can use a locally initialized Gledger that it controls (and can therefore modify arbi-
trarily). This follows from the fact that we do not care about the view of an adversary in such a
reduction to be indistinguishable to a distinguisher that has access to Gledger. In fact, it will trivially
be distinguishable. But since a locally initialized Gledger is indistinguishable to the adversary that
is simply allowed to interact using the given interface (i.e. efficiently simulatable), the adversary’s
behavior does not change. Using this idea, we can perform extraction as in the plain model.

5.5 Impossibility of Constant Round Black-Box Zero Knowledge

In this section, we prove the impossibility of constant round zero-knowledge protocols w.r.t. black-
box simulation in the blockchain-hybrid model. The starting point for our result is the beautiful
work by Barak and Lindell[BL02] who showed that it is impossible to construct (non-trivial) con-
stant round zero knowledge arguments or proofs with respect to black-box simulation if the simu-
lator runs in strict polynomial time. At a high level, their impossibility result constructs a verifier
with appropriate probability of abort in a given step such that with noticeable probability an honest
execution will complete, but the simulator “runs out of time” when it attempts to gain any ad-
vantage over an honest prover. While they prove their impossibility result w.r.t. strict polynomial
time black-box simulators, we extend their impossibility in our blockchain-hybrid model to stronger
classes of simulators. In addition to simulators which run in strict polynomial time, we consider
two additional classes of simulators: (1) simulators that can run in expected polynomial time, but
have an a priori bounded memory, and hence at any time, can make a fixed polynomial number of
queries to the adversary by running them in parallel; and (2) simulators that can run in expected
polynomial time, but can make an unbounded number of queries to the adversary by running them

153

in parallel. It is easy to see that the second class is stronger than the first. These results complement
our positive results and demonstrate that our constructed protocols are tight.

For our setting, a universally constant round protocol will be such that (i) the number of rounds
are constant; (ii) and there is a constant upper bound on the size that the state can increase by
during an execution of the protocol.

For a constant round protocol, let us first consider the simplest setting where the simulator can
only run for some strict polynomial time. In addition, it can make a fixed number of polynomial
queries in parallel to the adversary by making copies. While the polynomial can be arbitrary, it
is fixed in advance. Thus, the effective number of computation steps for the simulator is a strict
polynomial. We can thus apply directly the result from [BL02] to construct a verifier that prevents
the simulator from gaining any advantage over an honest prover.

Bounded memory simulator. Now we let us consider an expected polynomial time simulator with
bounded memory. This means that at any given time, the simulator may only have a strict poly-
nomially bounded number of parallel executions. To invoke the result from Barak-Lindell [BL02],
we need to describe a verifier strategy that forces the simulator to always run in strict polynomial
time. Intuitively this means that for the given verifier strategy, any simulator running in super-
polynomial time would leak side-channel information, i.e. the verifier would realize it was being
run in super-polynomial time. We assume that a k-round protocol gives some upper bound r on
how much the size of the state can expand during the execution of the protocol. This is enforced
by the ExtendPolicy function. See appendix A.1.

We describe below an adversarial verifier strategy that forces the simulator to run in strict poly-
nomial time:

– At the start of the protocol, the verifier obtains the state stateV from Gledger. Let the size of the
state be iV := |stateV|.

– Behave according to underlying honest strategy.

– When the prover sends its last message pℓ, the verifier sends the signed transcript to Gledger,
and waits for stateV to include the transcript. Let i∗ be the index of the state that the transcript
appear in. It then checks if i∗ − iV is larger than r, if so it outputs a special abort symbol ⊥.

Note that unlike plain model, due to the presence of Gledger, a verifier’s view is not completely
determined by the messages it receives from the prover.

Given that the interval between state being expanded is some polynomial (since the adversary
controls this in a restricted manner), a super-polynomial running time would ensure that the in-
crease in state size is not a constant. Thus, to avoid a trivial distinguisher that looks for the special
abort, the simulator must run in strict polynomial time.

Unbounded memory. We now proceed to extend the impossibility to simulators that have no a
priori bound on the number of parallel queries they make to the verifier, but still run in expected
polynomial time. Here, we need to be wary of the simulator adaptively choosing to increase number
of parallel queries.

While the result [BL02] does not apply to this setting, our results will build on their verifier
strategy. Our adversarial verifier waits for constant time c1 (here time is in terms of computation
steps) on getting the query, answers correctly with prob ϵ and aborts with prob 1 − ϵ. We will
choose the probability such that ϵ > 1/q(λ) for some polynomial q(·). The probability (over P’s
random coins) that an honest P causes the honest verifier to accept is p = ϵc, where c is the number

154

of rounds in the protocol. Since c is a constant, an honest prover will convince the verifier with
noticeable probability as desired.

Let ϵ = ϵ(λ) be some value to be determined later. Let H = {Hλ}λ∈N be a family of f(λ)-wise
independent hash function, such that for every h ∈ Hλ, h : {0, 1}≤c·m → {0, 1}λ, where {0, 1}≤c·m

denotes all strings of length at most c ·m. f(λ) will be determined later. c denotes the number of
prover messages, and m = m(λ) denotes the longest prover message of the protocol. We present
the detailed strategy below:

Verifier V

Random tape: (h, r) - h defines a function in Hλ, and r is of the length of the random tape
required by the honest verifier strategy Input: Series of prover messages q = (α1, . . . , αi)

1. Step 1 - decide whether or not to abort:

(a) Compute h(q′) for every prefix q′ of q. That is, for every j(1 ≤ j ≤ i), compute
h(α1, . . . , αj).

(b) Wait c1 time and abort (by outputting the special symbol ⊥), unless for every j, the
first log

(
1
ϵ

)
bits of h(α1, . . . , αj) are equal to 0.

(Since the definition of V is by its next message function, we have to ensure that it replies
to q only if it would not have aborted on messages sent prior to q in an interactive setting.
This is carried out by checking that it would not have aborted on all prefixes of q.)

2. Step 2 - if not aborting,

(a) Run the honest verifier on input α1, . . . , αi and with random tape r, and obtain its
response β.

(b) Wait c1 time and output β.

For simplicity of exposition, we assume that the verifier is always convinced. Our analysis naturally
extends to the more general setting, where this may not hold.

Now consider the behavior of the same verifier in a simulation by Sim. Sim can issue any number
of queries (in parallel) to the adversary at any point of time (by making copies). Consider epochs
each of length c1. In each epoch, the simulator may make a query at any point (and will get the
answer only in the next epoch after time c1 has elapsed). Represent the total number of queries the
simulator makes in epoch i by qi. Note that the Sim can only run for fixed constant c2 epochs (else
our earlier proof would apply). Let p̃ be the probability that Sim output a transcript (α1, . . . , αc)
such that the honest verifier accepts, and Sim received a non-aborting response for every prefix
query. By the zero-knowledge property, p̃ is at least p − negl(λ). Specifically, because ϵ is chosen
such that it is an inverse of a polynomial, we have p̃ ≥ p/2. Since the simulator Sim is black-box, it
does not know ϵ and can only observe the output of the queries.

We show that in each adaptive step, if Sim increases the number of parallel copies by more than
an a priori bounded polynomial, it no longer runs in expected polynomial time.

Epoch 1 . Consider epoch 1. During this epoch, by construction of the verifier, the simulator
has not received any response from the verifier. Irrespective, it makes q1 queries to the verifier.

155

We claim that other than with negligible probability (over the coins of Sim), there exists a
polynomial f1(λ) such that q1 ≤ f1(λ).

If it is not the case, with noticeable probability Sim runs in super-polynomial time. Thus,
Sim’s expected running time would become super-polynomial as well, violating our restriction.

For the subsequent analysis, we define the event E to be,

Event E := Sim has seen fewer than c+ 1 queries answered up until that point.

We shall now bound the number of queries for each epoch conditioned on event E occurring.
Specifically, we will show that if Sim has seen fewer than c + 1 queries, then the number
of queries it makes is bounded by some polynomial in each epoch. We will then argue that
any simulator that makes fewer than c + 1 queries to generate an accepting transcript (i.e.
essentially generating a transcript without rewinding), can be used by a cheating prover to
break soundness.

Epoch 2. Now consider epoch 2. During this epoch, it receives responses to the queries made
in epoch 1. Let us represent this by a “configuration” vector v1 of dimension q1 where each
entry is either ⊥ if it aborted, or ⊤ otherwise. We split our analysis of the number of queries
q2, in epoch 2, into two cases (both conditioned on event E):

Case I. If the number of non-aborts in v1 are at most c, i.e. event E holds, then there
exists a polynomial f2(λ) such that for every configuration of v1, q2 ≤ f2(λ).

Case II. If the number of non-aborts in v1 are at most c, i.e. event E holds, there is
no such f2, i.e. there is a configuration v∗1 such that the number of queries q2 is super-
polynomial. Given that we’ve conditioned on event E, there at most c “⊤” symbols in
every characteristic vector v1. Thus, the total number of such characteristic vectors are

(
q1
0

)
+

(
q1
1

)
+ · · ·+

(
q1
c

)
.

Since c is a constant, the above number is a polynomial (other than with negligible
probability) since we’ve already established that q1 is a polynomial. Thus conditioned
on event E, every possible configuration v∗1 occurs with noticeable probability. If Sim
runs in super-polynomial for a configuration v∗1 , then by the above argument, Sim now
runs in super-polynomial time with noticeable probability. Thus, Sim’s expected running
time would become super-polynomial as well, violating our restriction that expected
running time must be polynomial.

Thus, if the event E holds, other than with negligible probability the simulator makes
q2 number of queries, that are bounded by some polynomial.

Epochs 3, · · · , c2. For i ∈ {2, . . . , c2}, we follow identically the analysis for q2. But here, the
characteristic vector vi would include a symbol (⊥ or ⊤) for all queries made before epoch i
started. Thus, its dimension would be

∑i−1
i=1 qi.

Thus, conditioned on E, the queries of Sim are bounded by f1(λ), f2(λ), . . . , fc2(λ) in their
respective epochs. We denote by f := f(λ) =

∑c2
i=1 fi(λ) the bound on the number of queries made

by the simulator given event E holds.

156

From the formula that for n Bernoulli trials where each trial succeeds with probability p, the
probability of having k or more successes is at most

(
n
k

)
pk. In our setting, a trial is a query message

from the simulator, and the trial succeeds with probability ϵ. Thus the probability of having c+1 or
more successes in f trials is at most

(
f

c+1

)
ϵc+1.

Consider the event good where Sim outputs a verifying transcript, but receives exactly c non-
aborting responses from the verifier. From the earlier discussion, Sim must output an accepting
transcript with probability at least p/2 = ϵc/2. And since the probability of having c + 1 or more
successes in f trials is at most

(
f

c+1

)
ϵc+1, the event good occurs is computed below where E is the

event defined earlier, i.e. Sim receives fewer than c+ 1 queries

Pr[Sim succeeds] = Pr
[
Sim succeeds

∣∣E
]
· Pr

[
E
]
+ Pr[Sim succeeds |E] · Pr[E]

Since Sim outputs a transcript with c responses, we have that Pr[good] = Pr[Sim succeeds ∧ E] =
Pr[Sim succeeds |E] · Pr[E], i.e. making fewer than c + 1 queries corresponds to making exactly c
queries (other than with negligible probability). Therefore, we have,

Pr[good] = Pr[Sim succeeds]− Pr
[
Sim succeeds

∣∣E
]
· Pr

[
E
]

≥ Pr[Sim succeeds]− 1 · Pr
[
E
]

≥ ϵc/2−
(

f

c+ 1

)
ϵc+1

If we can set the value of ϵ to be such that Pr[good] is noticeable, we can rely on the proof in
[BL02]. Specifically, this is because we can then use Sim to construct a cheating prover that is able
convince an honest verifier with the same probability.

To this end, we set ϵ = 1

4·(f
c+1)

. Note that since f is a polynomial, and c is a constant, there

exists a polynomial such that ϵ(n) = 1/p(λ). Thus the difference between ϵc/2 and
(

f
c+1

)
ϵc+1 is

ϵc/4, which is an inverse polynomial as desired. We refer the reader to [BL02] for the full details.

5.6 Black-Box Impossibility of Zero Knowledge in the Plain Model

In this section we shall show that in the plain model, it is impossible to construct a zero knowledge
proof system against blockchain active adversaries (BCA).

Recall that the main advantage of a black-box simulator over an adversary is its ability to rewind
the adversary. We now sketch a simple verifier strategy that makes it impossible for the simulator
to successfully rewind the verifier.

For any polynomial ℓ, let (p1, v1, p2, v2, · · · , pℓ, vℓ, pℓ+1) denote the sequence of messages in a
purported ZK protocol. Let stateV be the Gledger state of the verifier. The adversarial verifier strategy
is as follows:

– On receiving a prover message pi, send the transcript (p1, v1, p2, v2, · · · , pi) (along with the
corresponding session id) to Gledger, and wait for the size of the state to increase by 4 ·
windowSize.

– Now, check for the if the following two conditions hold:

– the sent message is on the state; and
– there is no other transcript of the form (p̃1, ṽ1, p̃2, ṽ2, · · · , p̃i) for the same session id

anywhere in the state.

157

Only if both the checks pass, proceed by sending the honest response vi. It is not explicitly
stated, but the verifier maintains the state of the blockchain, and updates its state as it receives
valid blocks.

It is clear that in the interaction with the honest prover, the verifier behaves honestly and com-
pletes the protocol.

Now, consider any simulator. For the simulator to gain any advantage over a prover, the simu-
lator must receive responses from the verifier for at least two different i-th messages pi and p̃i for
some i. From the verifier’s strategy, we know that in both cases the verifier sends the transcript
to Gledger and waits for the state to expand sufficiently before responding. If the posted transcript
does not appear on the state after the specified wait period, the verifier aborts. This ensures that
the simulator cannot rewind the verifier without detection, and thus gains no advantage over an
honest prover.

5.7 UC Impossibility

In this section, we will show that it is impossible to achieve universal composition security [Can01]
in the blockchain model. This might seem surprising given the positive results of [CJS14] in the
non-programmable global random oracle (RO) model, which seems to have a similar flavor.

A crucial difference in these settings is that in the case of the non-programmable global RO
model, the posts by the honest parties to the oracle, and their corresponding responses, are private.
This is not true for the blockchain model as the queries are public to everyone. Importantly, this
in turn implies that the environment sees the actual blockchain, and not a view that the simulator
presents to the environment. This prevents the simulator from changing any query made by the
adversary to the blockchain. If the simulator does change the query, the environment will always
be able to tell the difference between the real and ideal execution. Intuitively, seeing the queries to
blockchain is not unique to the adversary, and thus does not constitute a new capability.

For this impossibility, we work in a slightly different model where we allow parties to make
an outstanding query request to the blockchain, asking for outstanding queries that have not been
included in the block. This closely models what happens in practice since parties broadcast the
information they want to post to the blockchain to anyone connected to them. This explicitly
models the fact that parties can see queries made to the blockchain. We show the impossibility of
UC secure commitments [CF01] in the blockchain model. We define the ideal functionality of the
commitment here, and refer to the reader to [Can01, CF01] for details and definitions.

Let us assume to the contrary, that there exists a simulator Sim for an adversarial committer.
Then, we shall describe an adversarial receiver that uses Sim to extract the value committed by the
committer. The adversarial committer works as follows:

1. Initialize Sim.

2. Behave as a “fake committer” by passing any message sent by the committer to Sim, and
vice-versa.

3. As and when blocks are received from the blockchain, pass them on to Sim.

4. When the committer makes a query q to the blockchain, this query is sent to Sim on behalf of
the “fake committer”.

5. Since Sim cannot change the query made by the adversary, when it makes the same query q
to the blockchain, we block this query. But as before, when a subsequent block is mined, we

158

Functionality FCOM

FCOM proceeds as follows with parties P1, . . . , Pn and an adversary Sim.
1. Upon receiving a value (Commit, sid, Pi, Pj , b) from Pi, where b ∈ {0, 1}, record the

value b and send the message (Receipt, sid, Pi, Pj) to Pj and Sim.

2. Upon receiving a value (Open, sid, Pi, Pj) from Pi, proceed as follows: If some value
b was previously recorded, then send the message (Open, sid, Pi, Pj , b) to Pj and Sim
and halt. Otherwise halt.

Figure 5.5: The ideal commitment functionality

pass it on to Sim.

6. When Sim makes a query to the UC commitment ideal functionality, stop and output this as
the committed value.

5.8 Open Problems

Our work demonstrates that under a decentralized trust assumption, namely that of the existence of
a secure blockchain, one can circumvent certain cryptographic impossibilities. Both (i) studying ad-
ditional lower bounds that can be circumvented with the help of blockchains; and (ii) more broadly
considering further reasonable trust assumptions; are interesting open problems. One should note
that what constitutes a “reasonable” trust assumption could vary depending on the setting consid-
ered.

159

Bibliography

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes
in Computer Science, pages 468–499, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany. 4, 5, 6, 52, 53, 59

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek.
Secure multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 443–458, Berkeley, CA, USA, May 18–21, 2014. IEEE Computer Society
Press. 7, 10

[AGJ+12] Shweta Agrawal, Vipul Goyal, Abhishek Jain, Manoj Prabhakaran, and Amit Sahai.
New impossibility results for concurrent composition and a non-interactive complete-
ness theorem for secure computation. In Reihaneh Safavi-Naini and Ran Canetti, edi-
tors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 443–460, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Hei-
delberg, Germany. 9, 131

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 119–135, Innsbruck, Austria,
May 6–10, 2001. Springer, Heidelberg, Germany. 6, 53

[AJ17] Prabhanjan Ananth and Abhishek Jain. On secure two-party computation in three
rounds. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptog-
raphy Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages
612–644, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidelberg, Ger-
many. 6

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd Annual
Symposium on Foundations of Computer Science, pages 106–115, Las Vegas, NV, USA,
October 14–17, 2001. IEEE Computer Society Press. 29

[BCG+18] Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain, Huijia Lin,
Rafael Pass, Sidharth Telang, and Vinod Vaikuntanathan. Indistinguishability obfus-
cation for RAM programs and succinct randomized encodings. SIAM J. Comput.,
47(3):1123–1210, 2018. 16, 30

160

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable
protocols with relaxed set-up assumptions. In 45th Annual Symposium on Foundations
of Computer Science, pages 186–195, Rome, Italy, October 17–19, 2004. IEEE Computer
Society Press. 9

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of ex-
tractable one-way functions. In David B. Shmoys, editor, 46th Annual ACM Symposium
on Theory of Computing, pages 505–514, New York, NY, USA, May 31 – June 3, 2014.
ACM Press. 3, 4

[BFSK11] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Physically
uncloneable functions in the universal composition framework. In Phillip Rogaway,
editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Com-
puter Science, pages 51–70, Santa Barbara, CA, USA, August 14–18, 2011. Springer,
Heidelberg, Germany. 9

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita
Khurana, and Amit Sahai. Promise zero knowledge and its applications to round opti-
mal MPC. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science, pages 459–
487, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany. 4,
5, 6, 53, 55, 56, 57, 59, 61, 62, 65, 67, 68, 81, 86, 87, 97

[BGK+18] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic avail-
ability. Cryptology ePrint Archive, Report 2018/378, 2018. https://eprint.iacr.

org/2018/378. 7, 24, 27

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure compu-
tation without setup. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory
of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science,
pages 645–677, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidelberg,
Germany. 4, 5, 6, 53

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the
error in computationally sound protocols? In 38th Annual Symposium on Foundations
of Computer Science, pages 374–383, Miami Beach, Florida, October 19–22, 1997. IEEE
Computer Society Press. 44, 47

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge ar-
guments based on any one-way function. In Walter Fumy, editor, Advances in Cryptology
– EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 280–305,
Konstanz, Germany, May 11–15, 1997. Springer, Heidelberg, Germany. 8

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In
Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014,
Part II, volume 8617 of Lecture Notes in Computer Science, pages 421–439, Santa Bar-
bara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany. 7, 10

161

https://eprint.iacr.org/2018/378
https://eprint.iacr.org/2018/378

[BKOV17] Saikrishna Badrinarayanan, Dakshita Khurana, Rafail Ostrovsky, and Ivan Visconti. Un-
conditional UC-secure computation with (stronger-malicious) PUFs. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017,
Part I, volume 10210 of Lecture Notes in Computer Science, pages 382–411, Paris,
France, April 30 – May 4, 2017. Springer, Heidelberg, Germany. 9

[BKP19] Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-knowledge beyond the
black-box barrier. In Moses Charikar and Edith Cohen, editors, 51st Annual ACM Sym-
posium on Theory of Computing, pages 1091–1102, Phoenix, AZ, USA, June 23–26,
2019. ACM Press. 6, 29, 30, 33, 36

[BL02] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction.
In 34th Annual ACM Symposium on Theory of Computing, pages 484–493, Montréal,
Québec, Canada, May 19–21, 2002. ACM Press. 130, 153, 154, 157

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II, volume 10821 of
Lecture Notes in Computer Science, pages 500–532, Tel Aviv, Israel, April 29 – May 3,
2018. Springer, Heidelberg, Germany. 5, 6, 22, 52, 56, 57, 78, 79

[Blu81] Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor, Advances in Cryp-
tology – CRYPTO’81, volume ECE Report 82-04, pages 11–15, Santa Barbara, CA, USA,
1981. U.C. Santa Barbara, Dept. of Elec. and Computer Eng. 15, 179

[Blu87] Manual Blum. How to prove a theorem so no one else can claim it. In International
Congress of Mathematicians, pages 1444–1451, 1987. 135, 149, 179

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure pro-
tocols (extended abstract). In 22nd Annual ACM Symposium on Theory of Computing,
pages 503–513, Baltimore, MD, USA, May 14–16, 1990. ACM Press. 4, 6

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a
transaction ledger: A composable treatment. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes
in Computer Science, pages 324–356, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany. 7, 10, 24, 26, 27, 129, 174

[BOV03] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography.
In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 299–315, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Heidelberg, Germany. 18

[BP04] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge.
In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of
Lecture Notes in Computer Science, pages 121–132, Cambridge, MA, USA, February 19–
21, 2004. Springer, Heidelberg, Germany. 19, 30, 36

[BP12] Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-knowledge. In
Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference, volume 7194

162

of Lecture Notes in Computer Science, pages 190–208, Taormina, Sicily, Italy, March 19–
21, 2012. Springer, Heidelberg, Germany. 6

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishabil-
ity from indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015: 12th Theory of Cryptography Conference, Part II, volume 9015 of Lec-
ture Notes in Computer Science, pages 401–427, Warsaw, Poland, March 23–25, 2015.
Springer, Heidelberg, Germany. 3, 19

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero
knowledge. In 47th Annual Symposium on Foundations of Computer Science, pages
345–354, Berkeley, CA, USA, October 21–24, 2006. IEEE Computer Society Press. 9,
131, 150, 151

[BV17] Nir Bitansky and Vinod Vaikuntanathan. A note on perfect correctness by derandomiza-
tion. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes in Computer Science, pages
592–606, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany. 3, 19

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In 42nd Annual Symposium on Foundations of Computer Science, pages 136–145,
Las Vegas, NV, USA, October 14–17, 2001. IEEE Computer Society Press. 8, 9, 10, 28,
158

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryp-
tography Conference, volume 4392 of Lecture Notes in Computer Science, pages 61–85,
Amsterdam, The Netherlands, February 21–24, 2007. Springer, Heidelberg, Germany.
7, 10, 28

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Com-
puter Science, pages 19–40, Santa Barbara, CA, USA, August 19–23, 2001. Springer,
Heidelberg, Germany. 8, 9, 158

[CGJ15] Ran Canetti, Vipul Goyal, and Abhishek Jain. Concurrent secure computation with
optimal query complexity. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Com-
puter Science, pages 43–62, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany. 141, 149, 153

[CGJ+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian Miers.
Fairness in an unfair world: Fair multiparty computation from public bulletin boards.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017: 24th Conference on Computer and Communications Security, pages 719–728,
Dallas, TX, USA, October 31 – November 2, 2017. ACM Press. 7, 10, 27

[CGJ19] Arka Rai Choudhuri, Vipul Goyal, and Abhishek Jain. On round optimal secure mul-
tiparty computation from minimal assumptions. Cryptology ePrint Archive, Report
2019/216, 2019. https://ia.cr/2019/216. 7

163

https://ia.cr/2019/216

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC secure
computation using tamper-proof hardware. In Nigel P. Smart, editor, Advances in Cryp-
tology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
545–562, Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Germany. 9

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global
random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014:
21st Conference on Computer and Communications Security, pages 597–608, Scottsdale,
AZ, USA, November 3–7, 2014. ACM Press. 7, 9, 28, 158

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In Eli Biham, editor,
Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 68–86, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.
8, 9

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In 34th Annual ACM Symposium on
Theory of Computing, pages 494–503, Montréal, Québec, Canada, May 19–21, 2002.
ACM Press. 9

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security in
the plain model from standard assumptions. In 51st Annual Symposium on Foundations
of Computer Science, pages 541–550, Las Vegas, NV, USA, October 23–26, 2010. IEEE
Computer Society Press. 131

[CO19] Michele Ciampi and Rafail Ostrovsky. Four-round secure multiparty computation from
general assumptions. Cryptology ePrint Archive, Report 2019/214, 2019. https:

//eprint.iacr.org/2019/214. 7

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent non-
malleable commitments (and more) in 3 rounds. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, Part III, volume 9816 of Lecture
Notes in Computer Science, pages 270–299, Santa Barbara, CA, USA, August 14–18,
2016. Springer, Heidelberg, Germany. 71

[COSV17a] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Delayed-input
non-malleable zero knowledge and multi-party coin tossing in four rounds. In Yael
Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference,
Part I, volume 10677 of Lecture Notes in Computer Science, pages 711–742, Baltimore,
MD, USA, November 12–15, 2017. Springer, Heidelberg, Germany. 4, 6

[COSV17b] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Round-optimal
secure two-party computation from trapdoor permutations. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume
10677 of Lecture Notes in Computer Science, pages 678–710, Baltimore, MD, USA,
November 12–15, 2017. Springer, Heidelberg, Germany. 4, 6

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, Advances

164

https://eprint.iacr.org/2019/214
https://eprint.iacr.org/2019/214

in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science,
pages 45–64, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer, Heidel-
berg, Germany. 2

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In 23rd Annual ACM Symposium on Theory of Computing, pages 542–552,
New Orleans, LA, USA, May 6–8, 1991. ACM Press. 53, 70, 150

[DFK+14] Dana Dachman-Soled, Nils Fleischhacker, Jonathan Katz, Anna Lysyanskaya, and Do-
minique Schröder. Feasibility and infeasibility of secure computation with malicious
PUFs. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer Science, pages 405–
420, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.
9

[DL20] Hila Dahari and Yehuda Lindell. Deterministic-prover zero-knowledge proofs. Cryptol-
ogy ePrint Archive, Report 2020/141, 2020. https://eprint.iacr.org/2020/141.
2

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st Annual Sympo-
sium on Foundations of Computer Science, pages 283–293, Redondo Beach, CA, USA,
November 12–14, 2000. IEEE Computer Society Press. 53

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th
Annual ACM Symposium on Theory of Computing, pages 409–418, Dallas, TX, USA,
May 23–26, 1998. ACM Press. 10

[Fei90] Uriel Feige. Alternative models for zero knowledge interactive proofs. 1990. 179

[FNV17] Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Predictable arguments of
knowledge. In Serge Fehr, editor, PKC 2017: 20th International Conference on The-
ory and Practice of Public Key Cryptography, Part I, volume 10174 of Lecture Notes in
Computer Science, pages 121–150, Amsterdam, The Netherlands, March 28–31, 2017.
Springer, Heidelberg, Germany. 2, 3, 4, 29, 31, 41, 42, 44, 46, 47

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology –
CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa
Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany. 8

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In 22nd Annual ACM Symposium on Theory of Computing, pages 416–426, Baltimore,
MD, USA, May 14–16, 1990. ACM Press. 8, 150, 180

[GG17] Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results us-
ing blockchains. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of
Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science,
pages 529–561, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidelberg,
Germany. 7, 9, 10, 27

165

https://eprint.iacr.org/2020/141

[GGJ13] Vipul Goyal, Divya Gupta, and Abhishek Jain. What information is leaked under con-
current composition? In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages 220–
238, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.
141, 149, 153

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto, CA, USA,
June 1–4, 2013. ACM Press. 2, 16, 17, 54

[GIKM98] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in
private information retrieval schemes. In 30th Annual ACM Symposium on Theory of
Computing, pages 151–160, Dallas, TX, USA, May 23–26, 1998. ACM Press. 6

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio, edi-
tor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lecture Notes in
Computer Science, pages 308–326, Zurich, Switzerland, February 9–11, 2010. Springer,
Heidelberg, Germany. 9

[GJO10] Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Password-authenticated session-key
generation on the internet in the plain model. In Tal Rabin, editor, Advances in Cryptol-
ogy – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 277–294,
Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany. 141,
149, 153

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, June 1996. 86, 92

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput., 25(1):169–192, 1996. 2, 4, 8, 52

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances
in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer
Science, pages 281–310, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Ger-
many. 10

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone proto-
col with chains of variable difficulty. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Com-
puter Science, pages 291–323, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany. 10

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh Viswanathan.
The relationship between public key encryption and oblivious transfer. In 41st Annual
Symposium on Foundations of Computer Science, pages 325–335, Redondo Beach, CA,
USA, November 12–14, 2000. IEEE Computer Society Press. 86

166

[GKOV12] Sanjam Garg, Abishek Kumarasubramanian, Rafail Ostrovsky, and Ivan Visconti. Im-
possibility results for static input secure computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture
Notes in Computer Science, pages 424–442, Santa Barbara, CA, USA, August 19–23,
2012. Springer, Heidelberg, Germany. 9, 131

[GKW15] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of
conditional disclosure of secrets and attribute-based encryption. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II,
volume 9216 of Lecture Notes in Computer Science, pages 485–502, Santa Barbara, CA,
USA, August 16–20, 2015. Springer, Heidelberg, Germany. 6

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In 21st Annual ACM Symposium on Theory of Computing, pages 25–32, Seattle, WA,
USA, May 15–17, 1989. ACM Press. 15, 179

[GLP+15] Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sahai. Round-efficient
concurrently composable secure computation via a robust extraction lemma. In Yev-
geniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptography
Conference, Part I, volume 9014 of Lecture Notes in Computer Science, pages 260–289,
Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany. 131, 142, 143,
145, 146

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The
exact round complexity of secure computation. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of
Lecture Notes in Computer Science, pages 448–476, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany. 2, 4, 5, 6, 125

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In 17th Annual ACM Symposium on
Theory of Computing, pages 291–304, Providence, RI, USA, May 6–8, 1985. ACM Press.
8, 175, 178

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988. 19,
20, 67

[GMR89a] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. 2, 3, 52

[GMR89b] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989. 175

[GMW87a] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City, NY,
USA, May 25–27, 1987. ACM Press. 4, 8, 150

167

[GMW87b] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in
zero-knowledge, and a methodology of cryptographic protocol design. In Andrew M.
Odlyzko, editor, Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 171–185, Santa Barbara, CA, USA, August 1987. Springer,
Heidelberg, Germany. 52

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, December 1994. vii, 1, 2, 29, 33, 51, 175,
176, 177

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cam-
bridge University Press, 2004. 20

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques
for NIZK. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume
4117 of Lecture Notes in Computer Science, pages 97–111, Santa Barbara, CA, USA,
August 20–24, 2006. Springer, Heidelberg, Germany. 3, 19

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
Lance Fortnow and Salil P. Vadhan, editors, 43rd Annual ACM Symposium on Theory of
Computing, pages 695–704, San Jose, CA, USA, June 6–8, 2011. ACM Press. 4, 6, 70

[Goy12] Vipul Goyal. Positive results for concurrently secure computation in the plain model.
In 53rd Annual Symposium on Foundations of Computer Science, pages 41–50, New
Brunswick, NJ, USA, October 20–23, 2012. IEEE Computer Society Press. 9, 131

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In Daniel Wichs and Yishay Mansour, editors, 48th Annual ACM Symposium
on Theory of Computing, pages 1128–1141, Cambridge, MA, USA, June 18–21, 2016.
ACM Press. 68, 69, 72, 73, 74

[GR19] Vipul Goyal and Silas Richelson. Non-malleable commitments using Goldreich-Levin
list decoding. In David Zuckerman, editor, 60th Annual Symposium on Foundations of
Computer Science, pages 686–699, Baltimore, MD, USA, November 9–12, 2019. IEEE
Computer Society Press. 55, 68

[GS18a] Sanjam Garg and Akshayaram Srinivasan. A simple construction of iO for turing ma-
chines. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018: 16th Theory of
Cryptography Conference, Part II, volume 11240 of Lecture Notes in Computer Science,
pages 425–454, Panaji, India, November 11–14, 2018. Springer, Heidelberg, Germany.
16, 30

[GS18b] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, Ad-
vances in Cryptology – EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in
Computer Science, pages 468–499, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany. 56, 78, 79

[GVW01] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,

168

ICALP 2001: 28th International Colloquium on Automata, Languages and Programming,
volume 2076 of Lecture Notes in Computer Science, pages 334–345, Heraklion, Crete,
Greece, July 8–12, 2001. Springer, Heidelberg, Germany. 4

[HHK+05] Iftach Haitner, Omer Horvitz, Jonathan Katz, Chiu-Yuen Koo, Ruggero Morselli, and
Ronen Shaltiel. Reducing complexity assumptions for statistically-hiding commitment.
In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 58–77, Aarhus, Denmark, May 22–26, 2005.
Springer, Heidelberg, Germany. 15, 149

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venki-
tasubramaniam. Round-optimal secure multi-party computation. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II, vol-
ume 10992 of Lecture Notes in Computer Science, pages 488–520, Santa Barbara, CA,
USA, August 19–23, 2018. Springer, Heidelberg, Germany. 4, 5, 6, 53, 61

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.
15, 19

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques and
Constructions. Information Security and Cryptography. Springer, Heidelberg, Germany,
2010. vii, 182

[HM96] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes from
collision-free hashing. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of Lecture Notes in Computer Science, pages 201–215, Santa Barbara, CA,
USA, August 18–22, 1996. Springer, Heidelberg, Germany. 16

[HPV16] Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubrama-
niam. Composable security in the tamper-proof hardware model under minimal com-
plexity. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryp-
tography Conference, Part I, volume 9985 of Lecture Notes in Computer Science, pages
367–399, Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg, Ger-
many. 7, 28

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with
minimal interaction. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010,
volume 6223 of Lecture Notes in Computer Science, pages 577–594, Santa Barbara, CA,
USA, August 15–19, 2010. Springer, Heidelberg, Germany. 6

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 572–591, Santa Barbara, CA,
USA, August 17–21, 2008. Springer, Heidelberg, Germany. 4

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum.
Distinguisher-dependent simulation in two rounds and its applications. In Jonathan

169

Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II, vol-
ume 10402 of Lecture Notes in Computer Science, pages 158–189, Santa Barbara, CA,
USA, August 20–24, 2017. Springer, Heidelberg, Germany. 53, 55

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, volume
4515 of Lecture Notes in Computer Science, pages 115–128, Barcelona, Spain, May 20–
24, 2007. Springer, Heidelberg, Germany. 9

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM Sympo-
sium on Theory of Computing, pages 20–31, Chicago, IL, USA, May 2–4, 1988. ACM
Press. 4, 150

[KLP05] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent general com-
position of secure protocols in the timing model. In Harold N. Gabow and Ronald
Fagin, editors, 37th Annual ACM Symposium on Theory of Computing, pages 644–653,
Baltimore, MA, USA, May 22–24, 2005. ACM Press. 10

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfus-
cation for turing machines with unbounded memory. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, 47th Annual ACM Symposium on Theory of Computing, pages 419–
428, Portland, OR, USA, June 14–17, 2015. ACM Press. 16, 30

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of
Lecture Notes in Computer Science, pages 335–354, Santa Barbara, CA, USA, August 15–
19, 2004. Springer, Heidelberg, Germany. 4, 125

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of multi-party
computation with a dishonest majority. In Eli Biham, editor, Advances in Cryptology –
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 578–595,
Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany. 4, 6

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In 33rd Annual ACM Symposium on Theory of Computing, pages
560–569, Crete, Greece, July 6–8, 2001. ACM Press. 131

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I, volume
10401 of Lecture Notes in Computer Science, pages 357–388, Santa Barbara, CA, USA,
August 20–24, 2017. Springer, Heidelberg, Germany. 10

[KSS11] Jeff Kahn, Michael Saks, and Clifford Smyth. The dual bkr inequality and rudich’s
conjecture. Combinatorics, Probability and Computing, 20(2):257–266, 2011. 14

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of
Lecture Notes in Computer Science, pages 705–734, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany. 7, 24, 27

170

[Lin03] Yehuda Lindell. General composition and universal composability in secure multi-party
computation. In 44th Annual Symposium on Foundations of Computer Science, pages
394–403, Cambridge, MA, USA, October 11–14, 2003. IEEE Computer Society Press.
9

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In Moni Naor, edi-
tor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes
in Computer Science, pages 203–222, Cambridge, MA, USA, February 19–21, 2004.
Springer, Heidelberg, Germany. 9, 131

[Lin08] Yehuda Lindell. Lower bounds and impossibility results for concurrent self composi-
tion. Journal of Cryptology, 21(2):200–249, April 2008. 9, 132

[Lin16] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. Cryp-
tology ePrint Archive, Report 2016/046, 2016. https://eprint.iacr.org/2016/046.
125, 182

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In Ran Canetti, editor,
TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of Lecture Notes
in Computer Science, pages 571–588, San Francisco, CA, USA, March 19–21, 2008.
Springer, Heidelberg, Germany. 70

[LS91] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In Alfred J. Menezes and Scott A. Vanstone, editors, Advances in Cryptology
– CRYPTO’90, volume 537 of Lecture Notes in Computer Science, pages 353–365, Santa
Barbara, CA, USA, August 11–15, 1991. Springer, Heidelberg, Germany. vii, 18, 179,
180

[LS19] Alex Lombardi and Luke Schaeffer. A note on key agreement and non-interactive
commitments. Cryptology ePrint Archive, Report 2019/279, 2019. https://eprint.
iacr.org/2019/279. 56, 86

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In Jon M. Kleinberg, editor, 38th
Annual ACM Symposium on Theory of Computing, pages 306–315, Seattle, WA, USA,
May 21–23, 2006. ACM Press. 129

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, January 1991. 15, 149

[NOVY98] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Perfect zero-
knowledge arguments for NP using any one-way permutation. Journal of Cryptology,
11(2):87–108, March 1998. 15, 149

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994. 3, 19

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In 21st Annual ACM Symposium on Theory of Computing, pages 33–43,
Seattle, WA, USA, May 15–17, 1989. ACM Press. 16

171

https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2019/279
https://eprint.iacr.org/2019/279

[Ore87] Yair Oren. On the cunning power of cheating verifiers: Some observations about zero
knowledge proofs (extended abstract). In 28th Annual Symposium on Foundations of
Computer Science, pages 462–471, Los Angeles, CA, USA, October 12–14, 1987. IEEE
Computer Society Press. 175

[ORS15] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box
two-party computation. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Ad-
vances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer
Science, pages 339–358, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Hei-
delberg, Germany. 23

[ORSV13] Rafail Ostrovsky, Vanishree Rao, Alessandra Scafuro, and Ivan Visconti. Revisiting
lower and upper bounds for selective decommitments. In Amit Sahai, editor, TCC 2013:
10th Theory of Cryptography Conference, volume 7785 of Lecture Notes in Computer Sci-
ence, pages 559–578, Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg, Germany.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In László Babai, editor, 36th Annual ACM Symposium on Theory of Computing,
pages 232–241, Chicago, IL, USA, June 13–16, 2004. ACM Press. 4, 6

[PR05] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In 46th Annual
Symposium on Foundations of Computer Science, pages 563–572, Pittsburgh, PA, USA,
October 23–25, 2005. IEEE Computer Society Press. 70

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In 43rd Annual Symposium on Foundations of Computer
Science, pages 366–375, Vancouver, BC, Canada, November 16–19, 2002. IEEE Com-
puter Society Press. 58, 61, 62, 131, 150

[PSs17] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in
asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes in
Computer Science, pages 643–673, Paris, France, April 30 – May 4, 2017. Springer,
Heidelberg, Germany. 10

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-
exponential one-way functions. In Henri Gilbert, editor, Advances in Cryptology – EU-
ROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 638–655,
French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany. 4, 6

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592
of Lecture Notes in Computer Science, pages 415–431, Prague, Czech Republic, May 2–6,
1999. Springer, Heidelberg, Germany. 131

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd Annual ACM Symposium on Theory of Computing, pages 387–394, Baltimore,
MD, USA, May 14–16, 1990. ACM Press. 20

172

[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In Moni Naor,
editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes
in Computer Science, pages 191–202, Cambridge, MA, USA, February 19–21, 2004.
Springer, Heidelberg, Germany. 61, 62

[Rud88] Steven Rudich. Limits on the provable consequences of one-way functions. 1988. 14

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th Annual Symposium on Foundations of Computer Science,
pages 543–553, New York, NY, USA, October 17–19, 1999. IEEE Computer Society
Press. 69

[TW87] Martin Tompa and Heather Woll. Random self-reducibility and zero knowledge inter-
active proofs of possession of information. In 28th Annual Symposium on Foundations
of Computer Science, pages 472–482, Los Angeles, CA, USA, October 12–14, 1987. IEEE
Computer Society Press. 175

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability am-
plification. In 51st Annual Symposium on Foundations of Computer Science, pages 531–
540, Las Vegas, NV, USA, October 23–26, 2010. IEEE Computer Society Press. 4, 6

[Yao82a] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 160–164, Chicago, Illi-
nois, November 3–5, 1982. IEEE Computer Society Press. 8, 23

[Yao82b] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science, pages 80–91,
Chicago, Illinois, November 3–5, 1982. IEEE Computer Society Press. 15, 179

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto,
Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press. 4, 54, 150

173

Appendix A

A.1 Extend Policy for Bitcoin

We copy verbatim from [BMTZ17] the properties ensured by ExtendPolicy:
1. The speed of the ledger is not too slow. This is implemented by defining an upper bound

maxTimewindow on the time interval within which at least windowSize state blocks have to be
added. This is known as minimal chain-growth.

2. The speed of the ledger is not too fast. This is implemented by defining a lower bound
minTimewindow on the time interval such that the adversary is not allowed to propose new
blocks if windowSize or more blocks have already been added during that interval.

3. The adversary cannot create too many blocks with arbitrary (but valid) contents. This is
formally enforced by defining an upper bound η on the number of these so-called adversarial
blocks within a sequence of state blocks. This is knows as chain quality. Formally, this is
enforced by requiring that a certain fraction of blocks need to satisfy higher quality standards
(to model blocks that were honestly generated).

4. Last, but not the least, ExtendPolicyguarantess that if a transaction is “old enough”, and still
valid with respect to the actual state, then it is included into the state. This is a week form of
guaranteeing that a transaction will make it into the state unless it is in conflict.

The formal description can be found in [BMTZ17].

174

A.2 The Many Flavors of Zero-Knowledge

In our chapter on deterministic prover zero-knowledge, we briefly discussed the existence of various
different notions of zero-knowledge, choosing to focus on (bounded) auxiliary-input zero knowl-
edge. In this section, we present the various notions, and the relationship between these notions.
This will help provide some context for both the impossibility in [GO94] (discussed further in Sec-
tion A.3), and the results presented in this thesis.

We do not repeat here the definitions of completeness and soundness (see Section 3.2.1 for
details), and focus solely on the zero-knowledge definitions.

We start with the original formulation of zero-knowledge by Goldwasser, Micali and Rackoff
[GMR85], hereon referred to as the GMR zero-knowledge definition.

Definition 37 (GMR Zero-knowledge). For every PPT verifier V∗, there exists a PPT simulator
SimV∗ , such that

{
ViewV∗⟨P(x,w),V∗(x)⟩

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

≈c

{
SimV∗(x)

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

.

The subsequent stronger notions were described in various works [Ore87, GO94, TW87, GMR89b]

Definition 38 (Auxiliary-input Zero-knowledge). For every PPT verifier V∗, there exists a PPT
simulator SimV∗ , such that

{
ViewV∗⟨P(x,w),V∗(x, y)⟩

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)
y∈{0,1}∗

≈c

{
SimV∗(x, y, 1t)

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)
y∈{0,1}∗

.

Definition 39 (Universal-simulation Zero-knowledge). There exists a PPT simulator Sim, such
that for every PPT verifier V∗ of running time at most t(λ),

{
ViewV∗⟨P(x,w),V∗(x)⟩

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

≈c

{
Sim(V∗, 1t, x)

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

.

Definition 40 (Black-box-simulation Zero-knowledge). There exists a PPT simulator Sim, such
that for every PPT verifier V∗,

{
ViewV∗⟨P(x,w),V∗⟩

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

≈c

{
SimV∗

(x)
}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

.

A.2.1 Relationship Between Notions of Zero-knowledge

We state here (without proof), the relationships between the various notions discussed above.
Cl(def) denotes the class of all interactive proof (or argument) systems satisfying the requirements
of definition def .

Theorem 18 ([Ore87]).

Cl(Auxiliary-input) = Cl(Universal-simulation)

175

Intuitively, an auxiliary-input simulator can be constructed from a universal simulator by hard-
coding t bits of the auxiliary input y into the description of the verifier, where t is the running
time. A universal simulator can be constructed from an auxiliary-input simulator by consider the
auxiliary-input simulator for the universal Turing machine, and setting the auxiliary-input to be the
description of the verifier.

We note that the existence of a universal simulator is not guaranteed from the existence of a
bounded auxiliary-input zero-knowledge since the running time can be larger than the auxiliary-
input.

Theorem 19 ([GO94]).

Cl(Black-box-simulation) ⊆ Cl(Auxiliary-input) ⊆ Cl(GMR)

The proof follows in a fairly straightforward manner from the corresponding definitions.

176

A.3 Goldreich-Oren [GO94] impossibility for Deterministic Provers

Here we sketch out the impossibility of deterministic prover auxiliary-input zero-knowledge for
non-trivial languages as defined in [GO94]. Before we can state the theorem, we must establish
what it means for a language to be trivial. Below, we define the class BPP which we state to be the
class of trivial languages.

Definition 41 (Complexity class BPP). A language L is in BPP if there exists a PPT machine M
such that

Completeness. if x ∈ L, Pr[M(x) = accept] ≥ 1− negl(|x|).
Soundness. if x /∈ L, Pr[M(x) = accept] < negl(|x|).

Any interactive proof system for L ∈ BPP is trivial since a PPT verifier can always run the
corresponding M for L on input any x, and decide whether to accept without interacting with a
prover.

We now state the formal theorem below, where auxiliary-input zero-knowledge is defined in
Definition 38.

Theorem 20 ([GO94]). Let L be any language. If L has an auxiliary-input zero-knowledge protocol
with deterministic provers, then L ∈ BPP.

Let (P,V) be the deterministic prover zero-knowledge protocol for L with the corresponding
auxiliary-input zero knowledge simulator Sim. To show that L ∈ BPP, we construct using Sim a
machine M as defined in Definition 41.

Assume that the verifier V sends the first message. This can be assumed without loss of gen-
erality since the protocol can always be modified to send an empty string to be the empty string
if it is not the case (or a random string if public coin). Before we proceed, let us establish some
notation. Specifically, let −→v i := (ṽ1, · · · , ṽi). We define V∗−→v i

to be the verifier that has hardcoded
the strings ṽ1, · · · , ṽi, and for its first i messages uses the string ṽj as its j-th message, and can
behave arbitrarily after it has sent the i-th message.

Note that V∗−→v i
is not the prescribed verifier for the underlying protocol. We are ready to describe

M, utilizing the underlying prescribed verifier V and simulator Sim.

M(x):
1. Choose a random r //the randomness to be used with the prescribed verifier V

2. For each i ∈ [ρ],

(a) Compute vi := V(x, p1, · · · , pi−1; r)

(b) Set ṽi := vi.

(c) ({p̃j}ρj=1, r̃)← Sim
(
x,V∗−→v i

, 1t
)

. //where V∗−→v i
is as defined above

(d) Set pi := p̃i. //ignore the remaining outputs of Sim

3. Output V(x, p1, · · · , p̃ρ; r) //accept or reject with the prescribed verifier
We provide a high level sketch of the soundness and completeness properties for the machine

M described above. For simplicity, we consider here the case of efficient provers, and we refer the
reader to [GO94] for the more general setting.

177

Soundness. When x /∈ L, if M outputs accept with non-negligible probability, we can break
the soundness of the underlying protocol (P,V) using the same strategy as in M. This follows
from the following observations regarding M: (i) M uses the prescribed verifier V to compute the
verifier messages using the randomness r sampled in Step 1; (ii) additionally, the aforementioned
randomness r is not used other than to execute the prescribed verifier V.

To build a cheating prover P∗ interacting with a verifier V, run a modified machine M̃ which (i)
skips Steps 1, 2(a) and 3; and (ii) sets ṽi in Step 2(b) to be the message P∗ receives from V. From
the description of P∗ if follows that if M accepts with non-negligible probability, P∗ succeeds with
the (same) non-negligible probability.

Completeness. Completeness follows from the completeness and zero-knowledge properties of the
underlying protocol. From the completeness of the protocol, we know that when x ∈ L, the honest
prover produces an accepting transcript. In fact, since the prover is deterministic, for any fixed
witness w and verifier randomness r, there is a unique protocol transcript, i.e. prover messages are
fixed by r and w. From the zero-knowledge property, the simulator must produce (other than with
negligible probability) the same prover messages in the simulated transcript as in the real transcript.
We do not provide the details here, but at a high level this follows from the fact that (i) verifier V∗−→v i

behaves like a prescribed verifier when the auxiliary input includes the prescribed verifier messages
with the exception that the Sim must produce simulated verifier randomness consistent with the
passed verifier messages; and (ii) a non-uniform distinguisher with access to the witness w can
generate the protocol transcript by itself and compare with simulated transcript.

In conjunction with Theorem 19, the above impossibility also rules out the existence of deter-
ministic prover zero-knowledge with black-box-simulation but does not have any bearing on the
[GMR85] notion of zero-knowledge.

178

A.4 Lapidot-Shamir [LS91] Three Round Witness Indistinguish-
able Proof

We describe here the 3 message (round) witness indistinguishable proof implicit in the work of
[LS91], as presented in [Fei90]. The protocol, as in Blum’s Hamiltonicity protocol [Blu87]1, is
presented for the NP-complete language Graph Hamiltonicity, which we denote below.

LHC =
{
G = (V,E) where n

def
= |V |

∣∣∣ ∃C ⊂ E s.t. C is a directed Hamiltonian
}

The protocol uses a non-interactive statistically binding commitment schemes (Section 2.3),
which can be constructed assuming injective one-way functions [Blu81, Yao82b, GL89].

The Graph G = (V,E) is represented by a n× n matrix MG,

MG[u][v] =

{
1 if (u, v) ∈ E

0 otherwise

The protocol (PHC,VHC) is presented in Figure A.1. (PHC,VHC) is repeated k times in parallel
(with independent randomness for each execution) to obtain the protocol (P⊗k

HC ,V
⊗k
HC), where V⊗k

HC

accepts if and only if all k sessions of VHC accept.
We then have the following imported theorem.

Imported Theorem 4 ([LS91]). Assuming non-interactive commitments, (P⊗k
HC ,V

⊗k
HC) is a 3 round

delayed-input witness indistinguishable proof systems.

We provide a informal argument below for each of the desired properties.

Input-delayed. The prover only needs to know the number of vertices in a graph G in the first
round of the protocol, the actual graph G and its corresponding cycle (witness) is not required until
round 3.2

Public coin. The verifier only sends k random bits which it uses to evaluate the outcome of the
protocol, and thus satisfies the public coin property.

Completeness. Completeness follows in a straightforward manner from the description of the
protocol.

Soundness. We argue that the soundness of (PHC,VHC) is 1/2+negl(λ) which is amplified by paral-
lel repetition to be 1/2k + negl(λ). For (PHC,VHC) we in fact argue something stronger. Specifically,
if a cheating prover P∗ is able to convince a verifier with probability (noticeably) larger than 1/2,
then we can extract a witness for G ∈ LHC. This clearly implies soundness since any G /∈ LHC does
not possess a valid witness.

If a cheating prover P∗ is able to convince a verifier with probability (noticeably) larger than
1/2, then it must be the case that P∗ is able to answer both challenges (b = 0 and n = 1) from the

1We have previously described the Blum Hamiltonicty protocol in Section 5.3.1, and it bears resemblance to the [LS91]
protocol described here, with the notable exception that Blum’s Hamiltonicity protocol is not input delayed.

2This property is used in the NIZK construction of [LS91] where this protocol is implicit.

179

3 message [LS91] Witness Indistinguishable Proof (PHC,VHC) for LHC

Common Input: A directed graph G = (V,E) with λ
def
= |V |.

Auxiliary Input for Prover: a directed Hamiltonian, C ⊂ E, in G.

1. Prover PHC computes the first message as

(a) Pick a random cycle on n nodes to generate a graph H, and construct the corre-
sponding adjacency matrix AH .

(b) Commit to each entry of AH using Com.

send the n× n matrix of committed values to the verifier VHC.

2. Verifier VHC computes the second message to be a random bit b←$ {0, 1}.
3. Prover PHC computes the third message as

– if b = 0, set d to be the decommitment to all positions of AH .

– if b = 1, let π the permutation that maps from H onto the cycle C ⊂ E. Set d to
include π and the decommitment to all entries in Aπ(H) that do not correspond to
edges in G.

send d to the verifier VHC.

4. Verifier VHC first checks if all the values decommitted to by the prover are valid (with
respect to their corresponding commitment).

– if b = 0, the verifier checks if the revealed graph is a cycle on n vertices.

– if b = 1, the verifier checks if all the revealed values correspond to non-edges of
π(H) with value 0.

The verifier accepts if and only if both the initial checks, and the checks corresponding
to the challenge verify .

Figure A.1: Hamiltonicity proof system

verifier. Specifically, P∗ is able to both decommit to a cycle graph H, and a permutation π from H
to G. Combining the two, one can obtain the cycle C in G. Since the protocol utilizes a statisti-
cally binding commitment scheme, the argument holds (other than with negligible probability) for
computationally unbounded cheating provers as well. Thus, the protocol is a proof.

Witness Indistinguishability. We will argue the zero-knowledge property of the above protocol
for a single iteration (PHC,VHC), and use the fact that a zero-knowledge protocol is also witness
indistinguishable [FS90] - a property that composes with parallel execution [FS90], i.e. k parallel
repetitions with fresh randomness (P⊗k

HC ,V
⊗k
HC) remains witness indistinguishable.

Zero-knowledge of (PHC,VHC) follows from the fact that one can generate a simulated transcript
by guessing the verifier challenge bit b and committing to either (i) a cycle graph if b = 0; or (ii)

180

“empty” graph if b = 1. The third message of the simulation remains identical for b = 0 while for
b = 1, the simulator picks a random permutation π and opens to the appropriate non-edges (in fact,
there are no edges in the committed graph).

181

A.5 Hazay-Lindell [HL10] Analysis

In the description of the simulator Sim in Section 4.5, if the adversary A did not abort (or only
implicitly aborted), we sampled transcripts until there were 12 · λ non-aborting transcripts before
proceeding with the simulation. The purpose was to estimate the aborting probability ε′ to be within
a constant factor of the true (unknown) aborting probability ε. This ensured that the expected
running time of the simulator was poly(λ) for some polynomial poly.

Here we elaborate on how we arrive at the specific number of non-aborting transcripts 12 · λ.
This discussion is taken largely from [HL10] (Section 6.5.3). We refer the reader to [HL10, Lin16]
for a detailed discussion on why such estimations are necessary.

Let m be the total number of non-aborting transcripts needed to estimate ε to within a constant
factor, i.e. from our discussion above we shall show that m = 12 · λ suffices. The estimate ε′ is set
to be m/T where T is the number of attempts to obtain m non-aborting transcripts.

The required value of m follows from the following Lemma used in [HL10].

Lemma 6 (Tail inequality for Geometric Variables). Let X1, · · · , Xm be m independent random
variables with geometric distribution with probability ε, i.e. for every i, Pr[Xi = j] = (1 − ε)j−1 · ε.
Let X =

∑m
i=1 and let µ = E[X] = m/ε. Then, for every δ,

Pr[X ≥ (1 + δ)µ] ≤ e−
mδ2

2(1+δ) . (A.1)

For 0 ≤ δ ≤ 1/2,

Pr[X ≤ (1− δ)µ] ≤ e−
mδ2

3(1−δ) . (A.2)

While the proof of Equation A.1 in the Lemma above is presented in [HL10], we provide below
the proof of Equation A.2 which follows in a similar manner but provided here for completeness.

Proof. For any α, let Yα denote the number of 1s appearing in a prefix of length α for Bernoulli
trials where each bit is 1 with probability ε. Then,

µ̃α := E[Yα] = α · ε .

By our description of the random variable X in the lemma, X ≤ (1− δ)µ if and only if Y(1−δ)µ ≥ m.
This follows from the fact that m successful trials in Yα occurred before α attempts, which is what
X ≤ α conveys. Therefore,

Pr[X ≤ (1− δ)µ] = Pr
[
Y(1−δ)µ ≥ m

]
.

We can focus on upper bounding the term Pr
[
Y(1−δ)µ ≥ m

]
. Since µ = m/ε, we have that µ̃α =

(1− δ)m for α = (1− δ)µ. Thus, for α = (1− δ)µ we have,
(
1 +

δ

1− δ

)
µ̃α =

(
1 +

δ

1− δ

)
(1− δ)m

= m .

Writing out Y(1−δ)µ in a more convenient form to apply the Chernoff bound, we have,

Pr
[
Y(1−δ)µ ≥ m

]
= Pr

[
Y(1−δ)µ ≥

(
1 +

δ

1− δ

)
µ̃(1−δ)µ

]
.

182

Using the Chernoff bound Pr[Y ≥ (1 + β)µ̃] ≤ e−
β2µ̃
3 for 0 ≥ β ≥ 1, we have

Pr
[
Y(1−δ)µ ≥ m

]
= Pr

[
Y(1−δ)µ ≥

(
1 +

δ

1− δ

)
µ̃(1−δ)µ

]

≤ e−(
δ

1−δ)
2 µ̃(1−δ)µ

3

= e−(
δ

(1−δ))
2 (1−δ)m

3

= e−
δ2

1−δ
m
3

for 0 ≤ δ ≤ 1/2 since those are the range of values for δ that ensure β = δ/(1− δ) ≤ 1.

Now, to apply the above lemma, let Xi denote the random variable that equals to the number
of attempts required for the i-th non-aborting transcript, and and let δ = ±1/2. Thus, each Xi

is a geometric distribution with probability ε. Clearly, from our description above, X =
∑m

i=1

corresponds to the total number of sample T . From the lemma above,

Pr

[
X ≤ m

2ε
∨X ≥ 3m

2ε

]
≤ Pr

[
X ≤ m

2ε

]
+ Pr

[
X ≥ 3m

2ε

]

= Pr

[
X ≤

(
1− 1

2

)
m

ε

]
+ Pr

[
X ≥

(
1 +

1

2

)
m

ε

]

≤ e−
m(1/2)2

3(1−1/2) + e−
m(1/2)2

2(1+1/2)

= e−m/6 + e−m/12 ≤ 2 · e−m/12

Thus the above bounds the probability that the estimate is not between 2ε/3 and 2ε to be
2e−m/12. By setting, m := 12 · λ, we have that the above probability is bounded by 1/2λ.

Sim also has an additional time out of 2λ steps. This is to cover the case that ε′ is not estimated
within a constant factor of ε with 12 ·λ non-aborting transcripts. But from above, since this happens
only with probability 1/2λ, the expected running time of the simulator remains polynomial.

183

	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Deterministic Prover Zero-Knowledge
	This Work

	Round Optimal Secure MPC from Oblivious Transfer
	Our Results
	Related Work

	Founding Secure Computation on Blockchains
	Our Results
	Related Work

	Outline of The Thesis
	Organization

	Preliminaries
	General
	Basic Notation
	Indistinguishability of Ensembles
	Computational Indistinguishability
	Statistical Indistinguishability

	One-way Functions
	Commitment Schemes
	Non-interactive Commitment Schemes
	Statistically Hiding Commitment Schemes

	Indistinguishability Obfuscation (IO)
	Witness Encryption
	Witness Indistinguishable Arguments
	Non-interactive Witness Indistinguishability (NIWI)
	Collision Resistance against Bounded Non-uniform Adversaries
	Pseudorandom Generators
	Signature Scheme
	Secure Multiparty Computation
	Garbled Circuits
	Oblivious Transfer
	Blockchain Model

	Deterministic Prover Zero-Knowledge
	Overview
	Definitions
	Deterministic-Prover Zero Knowledge Against Bounded-Auxiliary-Input Verifiers
	Explainable Verifiers

	A Deterministic-Prover Zero-Knowledge Protocol
	DPZK for Robustly-Explainable Verifiers
	From Explainable to Malicious Verifiers
	DPZK for NPcoNP
	DPZK for all of NP

	Predictable Arguments and DPZK
	Round Reduction and Laconicity
	Round Reduction
	Laconic Prover Messages

	Predictable Arguments from Honest-Verifier ZK
	Open Problems

	Round Optimal Multiparty Computation
	Overview
	Enforcing Honest Behavior
	Rewinding Related Challenges
	Protocol Design Summary

	Preliminaries
	Extractable Commitment Scheme
	Extractable Commitments with Bounded Rewinding Security
	Trapdoor Generation Protocol with Bounded Rewind Security
	Construction

	Witness Indistinguishable Proofs with Bounded Rewinding Security
	Non-Malleable Commitments
	Definitions
	Proof of Special Non-Malleable Commitments

	Oblivious Transfer with Bounded Rewind Security
	Definition
	Construction
	Four Round Delayed Input Multiparty Computation with Bounded Rewind Security

	Four Round MPC
	The Protocol
	Overview of Security Proof

	Full Security Proof
	Overview of the Simulation
	Simulator Sim
	Hybrids
	Indistinguishability of Hybrids

	Bidirectional to Alternating message model
	Open Problems

	Founding Secure Computation on Blockchains
	Overview
	Definitions and Preliminaries
	Zero Knowledge in the Gledger-hybrid model
	Concurrently Secure Computation in the Gledger-hybrid model
	(Multi-slot) Extractable Commitment Protocol C,R

	Black-box Zero Knowledge
	Graph Hamiltonicity Zero-knowledge Proof
	Our Protocol

	Concurrent Self Composable Secure Computation
	Concurrently Extractable Commitment
	Simulation-Extraction Strategy
	The Protocol
	Building Blocks
	Protocol Description

	Impossibility of Constant Round Black-Box Zero Knowledge
	Black-Box Impossibility of Zero Knowledge in the Plain Model
	UC Impossibility
	Open Problems

	
	Extend Policy for Bitcoin
	The Many Flavors of Zero-Knowledge
	Relationship Between Notions of Zero-knowledge

	Goldreich-Oren JC:GolOre94 impossibility for Deterministic Provers
	Lapidot-Shamir C:LapSha90 Three Round Witness Indistinguishable Proof
	Hazay-Lindell HazLin10 Analysis

