Correlation Intractability and **SNARGs** from Sub-exponential DDH

Arka Rai Choudhuri

Abhishek Jain

Johns Hopkins University and NTT Research

Zhengzhong Jin

Jiaheng Zhang UC Berkeley

Common Reference String (CRS)

Common Reference String (CRS)

 χ

 χ

What kind of computation can we hope to delegate based on standard assumptions?

What kind of computation can we hope to delegate based on standard assumptions? Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-Wichs'11]

X

SAT = { $(C, x) | \exists w \ s. t. \ C(x, w) = 1$ }

 $\forall i \in [k], (C, x_i) \in SAT$

SAT = {
$$(C, x) | \exists w \ s. t. \ C(x, w) = 1$$
}

 $\forall i \in [k], (C, x_i) \in SAT$

SAT = {
$$(C, x) | \exists w \ s. t. \ C(x, w) = 1$$
}

 $\forall i \in [k], (C, x_i) \in SAT$

$$SAT = \{(C, x) \mid \exists w \ s. t. \ C(x, w) = 1\}$$
$$\forall i \in [k], (C, x_i) \in SAT$$

SAT = {
$$(C, x) | \exists w \ s. t. \ C(x, w) = 1$$
}

 $\forall i \in [k], (C, x_i) \in SAT$

SAT = {
$$(C, x) | \exists w \ s. t. \ C(x, w) = 1$$
}

 $\forall i \in [k], (C, x_i) \in SAT$

Usefulness of BARGs

Construction of BARGs

BARGs

[C-Jain-Jin'21, Kalai-Vaikuntanathan-Zhang'21

verifiable PIR

[Ben-David-Kalai-Paneth'22]

Incrementally Verifiable

Computation

[Devadas-Goyal-Kalai-Vaikuntanathan'22, Pass-Paneth'22]

3 round public coin Zero-Knowledge (ZK) [Kiyoshima'22]

Non-Interactive ZK

[Champion-Wu'23, Bitansky-Kamath-Paneth-Rothblum-Vasudevan'23]

Aggregate Signatures

Construction of BARGs

Aggregate Signatures

QR – Quadratic residuosity, LWE – Learning with Error, DDH – Decisional Diffie-Hellman, DLIN – Decisional Linear Assumption over Bilinear Groups.

Construction of BARGs

QR – Quadratic residuosity, LWE – Learning with Error, DDH – Decisional Diffie-Hellman, DLIN – Decisional Linear Assumption over Bilinear Groups.

Theorem 1

Assuming sub-exponential hardness of DDH, there exists SNARGs for batch NP where

 $|\Pi| = \operatorname{poly}(\log k, |C|)$

SAT = { $(C, x) | \exists w \ s. t. \ C(x, w) = 1$ }

 $\forall i \in [k], (C, x_i) \in SAT$

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P where

 $|CRS|, |\Pi|, |\mathcal{L}| = polylog(T)$

Recent concurrent work [Kalai-Lombardi-Vaikuntanathan'23]: SNARGs for bounded depth circuits assuming sub-exponential hardness of DDH.

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P where

 $|CRS|, |\Pi|, |\partial| = polylog(T)$

Theorem 1

Assuming sub-exponential hardness of DDH, there exists SNARGs for batch NP where $|\Pi| = \operatorname{poly}(\log k_{-}|G|)$

 $|\Pi| = \operatorname{poly}(\log k, |C|)$

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P where

 $|CRS|, |\Pi|, |\partial| = polylog(T)$

Meta View: Advanced Primitives from DDH

DDH

Meta View: Advanced Primitives from DDH

Meta View: Advanced Primitives from DDH

Tools and Techniques

Fiat-Shamir (FS) Methodology: Recipe for Success

 β is a random string

Fiat-Shamir (FS) Methodology

 β is a random string

Fiat-Shamir (FS) Methodology

 $\forall x \notin \mathcal{L}$ BAD_{x,\alpha} = { β | $\exists \gamma$ s.t. Verifier accepts (α, β, γ)}

Fiat-Shamir (FS) Methodology

 $\forall x \notin \mathcal{L}$ BAD_{*x*,*a*} = {*β* | ∃*γ* s.t. Verifier accepts (*a*, *β*, *γ*)} If $x \notin \mathcal{L}$, no PPT \bigotimes can find α such that $h(x, \alpha) \in BAD_{x, \alpha}$
Correlation Intractability [Canetti-Goldreich-Halevi'98]

 $h(x, \alpha) \in BAD_{x, \alpha}$

h is correlation intractable (CI) for $BAD_{x,\alpha}$

Instantiating the FS Transform

Instantiating the FS Transform

Instantiating the FS Transform

see paper for details

Magic Box Special interactive protocol for batch NP

see paper for details

see paper for details

see paper for details

What properties does $BAD_{x,\alpha}$ have?

Properties of $BAD_{x,\alpha}$

$BAD_{x,\alpha}$ is product verifiable.

$$\forall x \notin \mathcal{L}$$

BAD _{x,\alpha} = {\beta | \exists \gamma\$ s.t. Verifier accepts (\alpha, \beta, \gamma)}

Properties of $BAD_{x,\alpha}$ $BAD_{x,\alpha} = BAD_{x,\alpha}^{(1)} \times BAD_{x,\alpha}^{(2)} \times BAD_{x,\alpha}^{(3)} \times BAD_{x,\alpha}^{(4)}$ $BAD_{x,\alpha} \text{ is product verifiable.}$

 $\forall x \notin \mathcal{L}$ BAD $_{x,\alpha}^{(j)} = \{\beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma)\}$

Properties of $BAD_{\chi,\alpha}$ $BAD_{\chi,\alpha} = BAD_{\chi,\alpha}^{(1)} \times BAD_{\chi,\alpha}^{(2)} \times BAD_{\chi,\alpha}^{(3)} \times BAD_{\chi,\alpha}^{(4)}$ $BAD_{\chi,\alpha}$ is product verifiable.

 $\forall x \notin \mathcal{L}$ BAD $_{x,\alpha}^{(j)} = \{\beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma)\}$ Exponentially many bad challenges even when β sampled from polynomial size challenge space.

BAD $_{x,\alpha}^{(j)} = \{ \beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma) \}$

see paper for details

What properties does $BAD_{x,\alpha}$ have?

see paper for details

 $BAD_{x,\alpha}$ properties

Bad challenges are a product set

2 Challenge space is of polynomial size

³ Bad challenges are product verifiable in TC⁰

BAD_{x,α}

h is correlation intractable for $BAD_{x,\alpha}$ $BAD_{x,\alpha}$ properties

Bad challenges are a product set

2 Challenge space is of polynomial size

³ Bad challenges are product verifiable in TC⁰

$BAD_{x,\alpha}$ properties

2 Challenge space is of polynomial size

³ Bad challenges are product verifiable in TC⁰

[Jain-Jin'21]

Difficulty [Holmgren-Lombardi-Rothblum'21]: BAD_{x,α} has exponentially many bad challenges.

$BAD_{x,\alpha}$ properties

Bad challenges are a product set

(2) Challenge space is of polynomial size

³ Bad challenges are product verifiable in TC⁰

 $BAD_{x,\alpha}$ properties

Bad challenges are a product set

2 Challenge space is of polynomial size

³ Bad challenges are product verifiable in TC⁰

 $BAD_{x,\alpha}$ properties

Bad challenges are a product set

2 Challenge space is of polynomial size

³ Bad challenges are product verifiable in TC⁰ poly

TC⁰ - Constant depth polynomial-size threshold circuits

For this talk

 $BAD_{x,\alpha}$ properties

2 Challenge space is of polynomial size

³ Bad challenges are product verifiable in poly

For this talk

BAD $\frac{(1)}{x,\alpha}$

BAD $\frac{(1)}{x \alpha}$

 $\begin{array}{c} \underline{\text{Compute Bad Challenge}} \\ \text{for } \beta \in \text{ChallengeSpace} \\ \\ & \text{if } \beta \in \text{BAD}_{x,\alpha}^{(1)} \\ \\ & \text{return } \beta \end{array}$

ChallengeSpace polynomial size + BAD $_{x,\alpha}^{(1)}$ efficiently verifiable \Rightarrow BAD $_{x,\alpha}^{(1)}$ efficiently computable.

$$BAD_{x,\alpha} = BAD_{x,\alpha}^{(1)} \times BAD_{x,\alpha}^{(2)} \times \cdots \times BAD_{x,\alpha}^{(d)}$$

$$BAD_{x,\alpha} = BAD_{x,\alpha}^{(1)} \times BAD_{x,\alpha}^{(2)} \times \cdots \times BAD_{x,\alpha}^{(d)}$$

$$\begin{array}{c|c} \hline \textbf{Compute Bad Challenge} \\ \hline \textbf{for } i \in [d] \\ & \quad \textbf{for } \beta^{(i)} \in \textbf{ChallengeSpace} \\ & \quad \textbf{if } \beta^{(i)} \in \textbf{BAD}_{x,\alpha}^{(i)} \\ & \quad \textbf{store } \beta^{(i)} \\ & \quad \textbf{return } (\beta^{(1)}, \cdots, \beta^{(d)}) \end{array}$$

poly repetitions + ChallengeSpace polynomial size + BAD $_{x,\alpha}^{(i)}$ efficiently verifiable \Rightarrow BAD $_{x,\alpha}$ efficiently computable.

Overview So Far


```
BAD_{x,\alpha} properties
```


2 Challenge space is of polynomial size

³ Bad challenges are product verifiable in poly

Reducing to Verifiable Unique Bad Challenge No parallel repetition

No restriction on number of bad challenges

Reducing to Verifiable Unique Bad Challenge No parallel repetition

Each segment has ℓ/k bits

h is correlation intractable for efficiently verifiable unique bad challenge relations.

h is correlation intractable for efficiently verifiable unique bad challenge relations.

h is correlation intractable for efficiently verifiable unique bad challenge relations.

Requirements:

1. Each $sBAD_j$ must be efficiently verifiable unique bad challenge relations.

Requirements:

- 1. Each $sBAD_j$ must be efficiently verifiable unique bad challenge relations.
- 2. If a challenge is bad, then there must exist a bad segment.

Challenge space

1.

2.

verifiable

Requirements:

- 1. Each $sBAD_j$ must be efficiently verifiable unique bad challenge relations.
- 2. If a challenge is bad, then there must exist a bad segment.

Requirements:

1. Each $sBAD_j$ must be efficiently verifiable unique bad challenge relations.

2. If a challenge is bad, then there must exist a bad segment.

Bad challenge by assumption

#bad challenges remaining

T = # bad challenges BAD $_{x,\alpha}^{(1)}$ k such that $2^k > T$

•

T = # bad challenges BAD $_{x,\alpha}^{(1)}$ k such that $2^k > T$

T = #bad challenges $BAD_{x,\alpha}^{(1)}$ k such that $2^k > T$

Overview So Far

 $BAD_{x,\alpha}$ properties

1 Bad challenges are a product set

2 Challenge space is of polynomial size

³ Bad challenges are product verifiable in poly

Concluding Remarks

See paper for:

- 1. Extension to parallel repetition.
- 2. Choice of parameters for size of segments, number of repetitions.
- 3. New somewhere extractable hash scheme necessary for "Magic box".

Recap: Our Results

Theorem 1

Assuming sub-exponential hardness of DDH, there exists SNARGs for batch NP where

 $|\Pi| = \operatorname{poly}(\log k, |C|)$

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P where

 $|CRS|, |\Pi|, |_{\partial}| = polylog(T)$

Thank you. Questions?

Arka Rai Choudhuri

arkarai.choudhuri@ntt-research.com

ia.cr/2022/1486