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Common Reference String (CRS)

<— polylog(T) —> ﬂ Verifier running time:
olylog(T
1 “ polylog(T)
>
M x M x IT is publicly verifiable

What kind of computation can we hope to delegate based on

standard assumptions?

Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-
Wichs’'11]
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SAT = {(C,x) | Iw s.t. C(x,w) = 1}
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Verifier running time:
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I1 is publicly verifiable
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QOur Results

Recent concurrent work [Kalai-Lombardi-
Vaikuntanathan’23]:

SNARG:s for bounded depth
circuits assuming sub-exponential within T steps
hardness of DDH.
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BAD, ., properties

1 Bad challenges are a
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BAD, ,

TCP - Constant depth polynomial-size

see paper for details threshold circuits
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DifﬁCUH'y [Holmgren-Lombardi-Rothblum’21]:
BAD, , has exponentially many bad
challenges.
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Il
o

- Challenges with prefix O

Challenges with prefix 1 - =1

By pigeonhole principle, unique bad [] Bad Segment
ChallengeSpace polynomial size + BAD SO)(
efficiently verifiable = sBAD ; efficiently sBAD ,

verifiable - i« bad if
#bad challenges with prefix - > #bad challenges/2
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Existence of a bad segment

#bad challenges remaining

— k Segmenfs —

T = #bad challenges BAD )

[ ] <T/2 k such that 2k > T

[ ] <T/4

contradiction

If each segment is good
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Concluding Remarks

See paper for:
1. Extension to parallel repetition.
2. Choice of parameters for size of segments, number of repetitions.

3. New somewhere extractable hash scheme necessary for “Magic
box”.



Recap: Our Results

Assuming sub-exponential hardness of DDH, there exists SNARGs for

batch NP where
11| = poly(logk, |C|)

Assuming sub-exponential hardness of DDH, there exists SNARGs for P

where
|CRS|, |T1], |@| = polylog(T)



Thank you. Questions?

Arka Rai Choudhuri

arkarai.choudhuri@ntt-research.com

ia.cr/2022/1486
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