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BAD𝑥,𝛼 = BAD 𝑥,𝛼
(1)

× BAD 𝑥,𝛼
(2)

× ⋯ × BAD 𝑥,𝛼
(𝑑)

Compute Bad Challenge

for 𝑖 ∈ 𝑑

for 𝛽(𝑖) ∈ ChallengeSpace

if 𝛽(𝑖) ∈ BAD 𝑥,𝛼
(𝑖)

store 𝛽(𝑖)

return (𝛽 1 , ⋯ , 𝛽 𝑑 )

poly repetitions + ChallengeSpace polynomial size + BAD 𝑥,𝛼
(𝑖)

 efficiently verifiable ⇒ BAD 𝑥,𝛼 efficiently computable. 
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Defining Bad Segments

= 0

= 1

is bad if 

#bad challenges with prefix        > #bad challenges/2  

sBAD 1

Challenges with prefix 0

Challenges with prefix 1

Bad Segment1. By pigeonhole principle, unique bad  

2. ChallengeSpace polynomial size + BAD 𝑥,𝛼
(1)
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verifiable
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Concluding Remarks

See paper for:

1. Extension to parallel repetition. 

2. Choice of parameters for size of segments, number of repetitions. 

3. New somewhere extractable hash scheme necessary for “Magic 
box”.



Recap: Our Results

Assuming sub-exponential hardness of DDH, there exists SNARGs for P 

where 

Theorem 2

CRS , Π , | | = polylog(𝑇)

Assuming sub-exponential hardness of DDH, there exists SNARGs for 

batch NP where 

Theorem 1

Π = poly(log 𝑘 , |𝐶|)



Thank you. Questions?
Arka Rai Choudhuri

arkarai.choudhuri@ntt-research.com

ia.cr/2022/1486
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