Correlation Intractability and
SNARGs from Sub-exponential DDH

7\
Arka Rai Choudhuri Sanjam Garg Abhishek Jain Zhengzhong Jin Jiaheng Zhang

Succinct Non-Interactive Arguments (SNARGs)

S

M x M ,x

X — M — accept

within T steps

Succinct Non-Interactive Arguments (SNARGs)

S

M x

X — M — accept

within T steps

ey

wants to delegate computation to &

Succinct Non-Interactive Arguments (SNARGs)

S

M ,x M ,x

X — M — accept

within T steps

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

S

M x M ,x

X — M — accept

within T steps

Succinct Non-Interactive Arguments (SNARGs)

S

M x

X — M — accept

within T steps

Common Reference String (CRS)

IT is publicly verifiable

Succinct Non-Interactive Arguments (SNARGs)

S

M x

X — M — accept

within T steps

Common Reference String (CRS)

<— polylog(T) —»

-
s

M

» X

Verifier running time:

polylog(T)

I1 is publicly verifiable

Succinct Non-Interactive Arguments (SNARGs)

S

X — M — accept

within T steps

Common Reference String (CRS)

<— polylog(T) —»

I1

ﬂ Verifier running time:
“ polylog(T)
>
M x IT is publicly verifiable

No PPT & can produce accepting II if

X —> M *accepf

within T steps

Succinct Non-Interactive Arguments (SNARGs)

S

X — M — accept

within T steps

Common Reference String (CRS)

<— polylog(T) —»

I1

ﬂ Verifier running time:
“ polylog(T)
>
M x IT is publicly verifiable

No PPT & can produce accepting x, I1 if

X — M *accepf

within T steps

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

<— polylog(T) —> ﬂ Verifier running time:
olylog(T
1 “ polylog(T)
>
M x M x IT is publicly verifiable

What kind of computation can we hope to delegate based on
standard assumptions?

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

<— polylog(T) —> ﬂ Verifier running time:
olylog(T
1 “ polylog(T)
>
M x M x IT is publicly verifiable

What kind of computation can we hope to delegate based on

standard assumptions?

Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-
Wichs’'11]

SNARGs for Batch NP (or BARGs)

SAT = {(C,x) | Iw s.t. C(x,w) = 1}

Vi € [k], (C,x;) € SAT

CRS

SNARGs for Batch NP (or BARGs)

SAT = {(C,x) | Iw s.t. C(x,w) = 1}

Vi € [k], (C,x;) € SAT

CRS

I1 is publicly verifiable

SNARGs for Batch NP (or BARGs)

SAT = {(C,x) | Iw s.t. C(x,w) = 1}

Vi € [k], (C,x;) € SAT

CRS

No PPT

o

C,xq,) Xy, I1 is publicly verifiable

can produce accepting II if

3i* € [k], (C,x;+) X SAT

SNARGs for Batch NP (or BARGs)

SAT = {(C,x) | Iw s.t. C(x,w) = 1}

Vi € [k], (C,x;) € SAT

CRS

I1 is publicly verifiable

SNARGs for Batch NP (or BARGs)

SAT = {(C,x) | Iw s.t. C(x,w) = 1}

Vi € [k], (C,x;) € SAT

CRS

I1 is publicly verifiable

SNARGs for Batch NP (or BARGs)

SAT = {(C,x) | Iw s.t. C(x,w) = 1}

Vi € [k], (C,x;) € SAT

CRS

— L|w|-k —

I1

I1 is publicly verifiable

SNARGs for Batch NP (or BARGs)

SAT = {(C,x) | Iw s.t. C(x,w) = 1}

Vi € [k], (C,x;) € SAT

CRS

— L|w|-k —

I1

Verifier running time:
k- [x| + ||

I1 is publicly verifiable

Usefulness of BARGs

BARGs

Usefulness of BARGs

SNARGs for P
C

7

BARGs

Usefulness of BARGs

SNARGs for P

C

verifiable PIR

Incrementally Verifiable

/ Computation
\ 3 round public coin Zero-

Knowledge (ZK)

BARGs

Non-Interactive ZK

Aggregate Signatures

Construction of BARGs

BARGs

Construction of BARGs

LWE

DLIN

Sub-exp DDH BARGS

+ QR

C

QR — Quadratic residuosity, LWE — Learning with Error, DDH — Decisional Diffie-Hellman,
DLIN — Decisional Linear Assumption over Bilinear Groups.

Construction of BARGs

LWE

DLIN

Sub-exp DDH BARGS

+ QR

C

Sub-exp DDH

QR — Quadratic residuosity, LWE — Learning with Error, DDH — Decisional Diffie-Hellman,
DLIN — Decisional Linear Assumption over Bilinear Groups.

QOur Results

Assuming sub-exponential hardness of DDH, there exists SNARGs for

batch NP where
11| = poly(logk, |C|)

SAT = {(C,x) | 3w s.t. C(x,w) = 1}

vi € [k], (C,x;) € SAT

QOur Results

X—» M ——» acce

within T steps

Assuming sub-exponential hardness of DDH, there exists SNARGs for P

where
|CRS|, |T1], | @| = polylog(T)

pt

QOur Results

Recent concurrent work [Kalai-Lombardi-
Vaikuntanathan’23]:

SNARG:s for bounded depth
circuits assuming sub-exponential within T steps
hardness of DDH.

X—» M —> accept

Assuming sub-exponential hardness of DDH, there exists SNARGs for P

where
|CRS|, |T1], |@| = polylog(T)

QOur Results

Assuming sub-exponential hardness of DDH, there exists SNARGs for

batch NP where
11| = poly(logk, |C|)

Meta View: Advanced Primitives from DDH

DDH

Meta View: Advanced Primitives from DDH

Succinct Secure Computation

|dentity Based Encryption

DDH

Non-Interactive Zero-Knowledge

Meta View: Advanced Primitives from DDH

Succinct Secure Computation

|dentity Based Encryption

DDH

Non-Interactive Zero-Knowledge

SNARGs for P

Tools and Techniques

Fiat-Shamir (FS) Methodology: Recipe for Success

f is a random string

Fiat-Shamir (FS) Methodology

Verifier(x) Prover (%) Verifier(x)

[is a random string

Fiat-Shamir (FS) Methodology

. - » N
= “ [Fiat-Shamir’86] g “

Prover(x) Verifier(x) Prover(x) Verifier(x)
B = h(x, a)

f is a random string

Vx & L
BAD, , = {f | 3y s.t. Verifier accepts (o, ,7)}

Fiat-Shamir (FS) Methodology

h
- N y -
— a,
> “ [Fiat-Shamir'86] g “
Prover(x) Verifier(x) Prover(x) Verifier(x)
B = h(x, a)
f is a random string
Vxé& L If x € L, no PPT 5 can find @ such that

BAD, , = {f | 3y s.t. Verifier accepts (o, ,7)}
h(x,a) € BAD, ,

Correlation Intractability

Prover(x) Verifier(x)

f is a random string

Vx & L
BAD, , = {f | 3y s.t. Verifier accepts (o, ,7)}

—

[Fiat-Shamir’86]

s —3

Prover(x) Verifier(x)
B = h(x, a)

If x & L, no PPT 5 can find a such that

h(x,a) € BAD, ,

h is correlation intractable (Cl) for BAD, ,

Instantiating the FS Transform

- B
— “
Prover(x) Verifier(x) l

BAD,

Instantiating the FS Transform

BAD,

h is correlation

intractable for

BAD, ,

Instantiating the FS Transform

h is correlation
intractable for

BAD, ,

BAD,, , —

A B =h(xa)

Verifier(x)

secure

[C-Jain-Jin"21] Methodology

Prover(x) Verifier(x)

Special interactive protocol for " ﬂ
P P BADxa —- 4 > “
batch NP
Prover(x) Verifier(x)
A B = h(x,)
secure

h is correlation

intractable for SNARGs for Batch NP
BAD, ,

[C-Jain-Jin"21] Methodology

S—4

Prover(x) Verifier(x)

Special interactive protocol for
batch NP

[C-Jain-Jin’21] Methodology

Prover(x) Verifier(x)

Special interactive protocol for
batch NP

This work

see paper for details

[C-Jain-Jin"21] Methodology

Magic Box
Special interactive protocol for
batch NP

see paper for details

[C-Jain-Jin"21] Methodology

Magic Box BAD, , - & o “
Special interactive protocol for
batch NP Prover(x) Verifier(x)
A B = h(x,a)
secure
h is correlation
intractable for SNARGSs for Batch NP

BAD, ,

see paper for details

[C-Jain-Jin"21] Methodology

Magic Box
Special interactive protocol for
batch NP

h is correlation
intractable for

BAD, ,

see paper for details

BAD,

Prover(x) Verifier(x)

B =h(x a)

secure

SNARGs for Batch NP

What properties does BAD, , have?

Properties of BAD, ,

BAD, ,, is product verifiable.

Vx & L
BAD , , = {f | 3y s.t. Verifier accepts (@, 5,7)}

Properties of BAD, ,

BAD,,, = BAD ,., < BAD BAD BAD

X, X, X,

BAD, ,, is product verifiable.

Vx & L
BAD , , = {f | 3y s.t. Verifier accepts (@, ,7)}

Properties of BAD, ,

BAD,, = BAD, ., < BAD ,, ~ BAD ,, * BAD .,
BAD, ,, is product verifiable.

Exponentially many bad challenges
Vx& L P 'y Y 9

BAD ;]2(= {f | Iy s.t. Verifier accepts (o, 5,7)} even when ,B sampled from

polynomial size challenge space.

Properties of BAD, ,

BAD,, = BAD ,, ~ BAD,, ~ BAD ,, * BAD .

BAD, ,, is product verifiable.

Each BAD(D

xo 18 efficiently

oy verifiable
BAD ;]2(= {f | Ay s.t. Verifier accepts (o, 5,7)}

[C-Jain-Jin"21] Methodology

Magic Box
Special interactive protocol for
batch NP

h is correlation
intractable for

BAD, ,

see paper for details

BAD,

Prover(x) Verifier(x)

B =h(x a)

secure

SNARGs for Batch NP

What properties does BAD, , have?

[C-Jain-Jin"21] Methodology

BAD, ., properties

1 Bad challenges are a

l product set
2 Challenge space is of
Magic Box BAD, , polynomial size
Special interactive protocol for '
batch NP N

3 Bad challenges are
product verifiable in TC

h is correlation
intractable for

BAD, ,

TCP - Constant depth polynomial-size

see paper for details threshold circuits

[C-Jain-Jin’21] Methodology

BAD, ., properties

BAD,

h is correlation
intractable for

BAD, ,

>

[C-Jain-Jin’21] Methodology

BAD, ., properties

BAD'x,a
computable in
TCO

A

BAD, .

[Jain-Jin’21]

sub-exp h is correlation
» intractable for
DDH
BAD'x,a

[C-Jain-Jin’21] Methodology

BAD, ., properties

BAD',
computable in ———————o--. ? _____ |
TCO

1
1
1
1
A 1
I
v

[Jain-Jin’21]

sub-exp h is correlation
» intractable for
DDH
BAD'x,a

[C-Jain-Jin"21] Methodology

BAD, ., properties

X,
computable in —eememmmon) A— : 1 Bad challenges are a

TC® product set

DifﬁCUH'y [Holmgren-Lombardi-Rothblum’21]:
BAD, , has exponentially many bad
challenges.

[C-Jain-Jin’21] Methodology

BAD, ., properties

BAD',
computable in ————meeee-. ? :
TCO

[C-Jain-Jin’21] Methodology

BAD, ., properties

BAD',
computable in ————meeee-. A :
TE2 poly

For this talk

[C-Jain-Jin’21] Methodology

BAD, ., properties

BAD',
computable in ————meeee-. A :

poly

For this talk

Easy Case: Verifiable Unique Bad Challenge

BAD

X,

Easy Case: Verifiable Unique Bad Challenge

BAD

X,

Compute Bad Challenge
for f € ChallengeSpace

if B € BAD , ,
| return B

ChallengeSpace polynomial size + BAD , , efficiently verifiable = BAD , , efficiently computable.

Easy Case: Verifiable Unique Bad Challenge

BAD, , = BAD, , x BAD , . BAD ;.

Easy Case: Verifiable Unique Bad Challenge

BAD, , = BAD, , % BAD BAD

X, X,

Compute Bad Challenge
fori € [d]

for £ € ChallengeSpace
if 3 € BAD ,, ,,
| store gW

return (B, -+, (@)

poly repetitions + ChallengeSpace polynomial size + BAD ,, , efficiently verifiable = BAD , , efficiently computable.

Overview So Far

BAD, ., properties

BAD'x,a BAD"x,a
computable in » verifiable and
poly unique

‘----

BAD, ,

Reducing to Verifiable Unique Bad Challenge

<= { =log, |ChallengeSpace| =

[g(l)

BAD

X,

No restriction on number of bad challenges

Reducing to Verifiable Unique Bad Challenge

k segments
<= { =log, |ChallengeSpace| =

BAD

X,

Each segment has €/k bits

Sampling Challenges via Segments

Sampling Challenges via Segments

Sampling Challenges via Segments

Sampling Challenges via Segments

h(x,a)

h(x,a,)

h is correlation intractable for efficiently verifiable
unique bad challenge relations.

Sampling Challenges via Segments

h(x,a)

h(x,a,)
= h(x,a,)

h is correlation intractable for efficiently verifiable
unique bad challenge relations.

Sampling Challenges via Segments

h(x,a)

h(x,a,)
= h(x,a,)
= h(x,a,)

h is correlation intractable for efficiently verifiable
unique bad challenge relations.

Reducing to Verifiable Unique Bad Challenge

k segments
<= { =log, |ChallengeSpace| =

BAD

X,

Each segment has €/k bits

Reducing to Verifiable Unique Bad Challenge

k segments
<= { =log, |ChallengeSpace| =

BAD sBAD,; sBAD, sBAD; sBAD,
X,0

Each segment has €/k bits

Reducing to Verifiable Unique Bad Challenge

k segments
<= { =log, |ChallengeSpace| =

BAD sBAD,; sBAD, sBAD; sBAD,
X,0

Requirements:
1. Each SBAD]- must be efficiently verifiable unique bad

challenge relations.
Each segment has €/k bits

Reducing to Verifiable Unique Bad Challenge

k segments
<= { =log, |ChallengeSpace| =

BAD sBAD,; sBAD, sBAD; sBAD,
X,0

Requirements:
1. Each SBADj must be efficiently verifiable unique bad

challenge relations.
2. If a challenge is bad, then there must exist a bad segment. Each segment has £/k bits

Defining Bad Segments

Challenge space

. All bad challenges for BAD g(clc)z

Defining Bad Segments

- Challenges with prefix O

Challenges with prefix 1

sBAD 4

- is bad if

#bad challenges with prefix - > #bad challenges/2

Defining Bad Segments

Il
o

- Challenges with prefix O -

-

Bad Segment

Challenges with prefix 1

sBAD 4

- is bad if

#bad challenges with prefix - > #bad challenges/2

Defining Bad Segments

Il
o

- Challenges with prefix O

Challenges with prefix 1 - =1

By pigeonhole principle, unique bad [] Bad Segment
ChallengeSpace polynomial size + BAD SO)(
efficiently verifiable = sBAD ; efficiently sBAD ,

verifiable - i« bad if
#bad challenges with prefix - > #bad challenges/2

Defining Bad Segments

= N

Defining Bad Segments

[0] -=Oi f =1
(o[]

Challenges with prefix 00 Challenges with prefix O1

Defining Bad Segments

[0] -=Oi f =1
(o[]

Challenges with prefix 00 Challenges with prefix O1

sBAD ,

- is bad given - if
#bad challenges with prefix -
> (#bad challenges with prefix -)/2

Defining Bad Segments

- -
- Bad Segment
o [

sBAD ,

- is bad given - if
#bad challenges with prefix -
> (#bad challenges with prefix -)/2

Reducing to Verifiable Unique Bad Challenge

k segments
<= { =log, |ChallengeSpace| =

BAD sBAD,; sBAD, sBAD; sBAD,
X,0

Requirements:
1. Each SBADj must be efficiently verifiable unique bad

challenge relations.
2. If a challenge is bad, then there must exist a bad segment. Each segment has £/k bits

Reducing to Verifiable Unique Bad Challenge

k segments
<= { =log, |ChallengeSpace| =

BAD sBAD,; sBAD, sBAD; sBAD,
X,0

Requirements:

2. If a challenge is bad, then there must exist a bad segment. Each segment has £/k bits

Existence of a bad segment

Bad challenge by assumption

Existence of a bad segment

#bad challenges remaining

— k Segmenfs —

T = #bad challenges BAD , ,

k such that 2K > T

Bad challenge by assumption

Existence of a bad segment

#bad challenges remaining

— k Segmenfs —

T = #bad challenges BAD , ,

<T/2 k such that 2% > T

Bad challenge by assumption

If each segment is good

Existence of a bad segment

#bad challenges remaining

— k Segmenfs ﬁ

T
T = #bad challenges BAD , ,
<T/2 k such that 2K > T
<T/4

Bad challenge by assumption

If each segment is good

Existence of a bad segment

#bad challenges remaining

— k Segmenfs ﬁ

T
T = #bad challenges BAD , ,
<T/2 k such that 2K > T
<T/4
5 <1

Bad challenge by assumption

If each segment is good

Existence of a bad segment

#bad challenges remaining

— k Segmenfs —

T = #bad challenges BAD)

[] <T/2 k such that 2k > T

[] <T/4

contradiction

If each segment is good

Overview So Far

BAD',

BAD", ,

computable in
poly

» verifiable and
unique

No repetition

BAD, ,

BAD, ., properties

Concluding Remarks

See paper for:
1. Extension to parallel repetition.
2. Choice of parameters for size of segments, number of repetitions.

3. New somewhere extractable hash scheme necessary for “Magic
box”.

Recap: Our Results

Assuming sub-exponential hardness of DDH, there exists SNARGs for

batch NP where
11| = poly(logk, |C|)

Assuming sub-exponential hardness of DDH, there exists SNARGs for P

where
|CRS|, |T1], |@| = polylog(T)

Thank you. Questions?

Arka Rai Choudhuri

arkarai.choudhuri@ntt-research.com

ia.cr/2022/1486

	Slide 1: Correlation Intractability and SNARGs from Sub-exponential DDH
	Slide 2: Succinct Non-Interactive Arguments (SNARGs)
	Slide 3: Succinct Non-Interactive Arguments (SNARGs)
	Slide 4: Succinct Non-Interactive Arguments (SNARGs)
	Slide 5: Succinct Non-Interactive Arguments (SNARGs)
	Slide 6: Succinct Non-Interactive Arguments (SNARGs)
	Slide 7: Succinct Non-Interactive Arguments (SNARGs)
	Slide 8: Succinct Non-Interactive Arguments (SNARGs)
	Slide 9: Succinct Non-Interactive Arguments (SNARGs)
	Slide 10: Succinct Non-Interactive Arguments (SNARGs)
	Slide 11: Succinct Non-Interactive Arguments (SNARGs)
	Slide 12: SNARGs for Batch NP (or BARGs)
	Slide 13: SNARGs for Batch NP (or BARGs)
	Slide 14: SNARGs for Batch NP (or BARGs)
	Slide 15: SNARGs for Batch NP (or BARGs)
	Slide 16: SNARGs for Batch NP (or BARGs)
	Slide 17: SNARGs for Batch NP (or BARGs)
	Slide 18: SNARGs for Batch NP (or BARGs)
	Slide 19: Usefulness of BARGs
	Slide 20: Usefulness of BARGs
	Slide 21: Usefulness of BARGs
	Slide 22: Construction of BARGs
	Slide 23: Construction of BARGs
	Slide 24: Construction of BARGs
	Slide 25: Our Results
	Slide 26: Our Results
	Slide 27: Our Results
	Slide 28: Our Results
	Slide 29: Meta View: Advanced Primitives from DDH
	Slide 30: Meta View: Advanced Primitives from DDH
	Slide 31: Meta View: Advanced Primitives from DDH
	Slide 32: Tools and Techniques
	Slide 33: Fiat-Shamir (FS) Methodology: Recipe for Success
	Slide 34: Fiat-Shamir (FS) Methodology
	Slide 35: Fiat-Shamir (FS) Methodology
	Slide 36: Fiat-Shamir (FS) Methodology
	Slide 37: Correlation Intractability [Canetti-Goldreich-Halevi’98]
	Slide 38: Instantiating the FS Transform
	Slide 39: Instantiating the FS Transform
	Slide 40: Instantiating the FS Transform
	Slide 41: [C-Jain-Jin’21] Methodology
	Slide 42: [C-Jain-Jin’21] Methodology
	Slide 43: [C-Jain-Jin’21] Methodology
	Slide 44: [C-Jain-Jin’21] Methodology
	Slide 45: [C-Jain-Jin’21] Methodology
	Slide 46: [C-Jain-Jin’21] Methodology
	Slide 47: Properties of subscript base , BAD , end base , sub , x ,, alpha end subscript
	Slide 48: Properties of subscript base , BAD , end base , sub , x ,, alpha end subscript
	Slide 49: Properties of subscript base , BAD , end base , sub , x ,, alpha end subscript
	Slide 50: Properties of subscript base , BAD , end base , sub , x ,, alpha end subscript
	Slide 51: [C-Jain-Jin’21] Methodology
	Slide 52: [C-Jain-Jin’21] Methodology
	Slide 53: [C-Jain-Jin’21] Methodology
	Slide 54: [C-Jain-Jin’21] Methodology
	Slide 55: [C-Jain-Jin’21] Methodology
	Slide 56: [C-Jain-Jin’21] Methodology
	Slide 57: [C-Jain-Jin’21] Methodology
	Slide 58: [C-Jain-Jin’21] Methodology
	Slide 59: [C-Jain-Jin’21] Methodology
	Slide 60: Easy Case: Verifiable Unique Bad Challenge
	Slide 61: Easy Case: Verifiable Unique Bad Challenge
	Slide 62: Easy Case: Verifiable Unique Bad Challenge
	Slide 63: Easy Case: Verifiable Unique Bad Challenge
	Slide 64: Overview So Far
	Slide 65: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 66: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 67: Sampling Challenges via Segments
	Slide 68: Sampling Challenges via Segments
	Slide 69: Sampling Challenges via Segments
	Slide 70: Sampling Challenges via Segments
	Slide 71: Sampling Challenges via Segments
	Slide 72: Sampling Challenges via Segments
	Slide 73: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 74: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 75: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 76: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 77: Defining Bad Segments
	Slide 78: Defining Bad Segments
	Slide 79: Defining Bad Segments
	Slide 80: Defining Bad Segments
	Slide 81: Defining Bad Segments
	Slide 82: Defining Bad Segments
	Slide 83: Defining Bad Segments
	Slide 84: Defining Bad Segments
	Slide 85: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 86: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 87: Existence of a bad segment
	Slide 88: Existence of a bad segment
	Slide 89: Existence of a bad segment
	Slide 90: Existence of a bad segment
	Slide 91: Existence of a bad segment
	Slide 92: Existence of a bad segment
	Slide 93: Overview So Far
	Slide 94: Concluding Remarks
	Slide 95: Recap: Our Results
	Slide 96: Thank you. Questions?

