
Correlation Intractability and
SNARGs from Sub-exponential DDH

Zhengzhong Jin
MIT

Abhishek Jain
Johns Hopkins University

and NTT Research

Sanjam Garg
UC Berkeley and NTT

Research

Jiaheng Zhang
UC Berkeley

Arka Rai Choudhuri
NTT Research

Succinct Non-Interactive Arguments (SNARGs)

ℳ

within 𝑇 steps

accept𝑥

ℳ , 𝑥 ℳ , 𝑥

Succinct Non-Interactive Arguments (SNARGs)

ℳ

within 𝑇 steps

accept𝑥

ℳ , 𝑥 ℳ , 𝑥

wants to delegate computation to

Succinct Non-Interactive Arguments (SNARGs)

ℳ

within 𝑇 steps

accept𝑥

ℳ , 𝑥 ℳ , 𝑥

Π

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

ℳ

within 𝑇 steps

accept𝑥

ℳ , 𝑥 ℳ , 𝑥

Π

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

ℳ

within 𝑇 steps

accept𝑥

ℳ , 𝑥 ℳ , 𝑥

Π

Π is publicly verifiable

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

ℳ

within 𝑇 steps

accept𝑥

ℳ , 𝑥 ℳ , 𝑥

Π

polylog(𝑇) Verifier running time:

polylog(𝑇)

Π is publicly verifiable

No PPT can produce accepting Π if

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

ℳ

within 𝑇 steps

accept𝑥

ℳ , 𝑥 ℳ , 𝑥

Π

polylog(𝑇) Verifier running time:

polylog(𝑇)

Π is publicly verifiable

ℳ

within 𝑇 steps

accept𝑥

No PPT can produce accepting 𝑥, Π if

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

ℳ

within 𝑇 steps

accept𝑥

ℳ , 𝑥 ℳ , 𝑥

Π

polylog(𝑇) Verifier running time:

polylog(𝑇)

Π is publicly verifiable

ℳ

within 𝑇 steps

accept𝑥

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

ℳ

within 𝑇 steps

accept𝑥

ℳ , 𝑥 ℳ , 𝑥

Π

polylog(𝑇) Verifier running time:

polylog(𝑇)

What kind of computation can we hope to delegate based on

standard assumptions?
- Nondeterministic computation (NP)? Unlikely! [Gentry-Wichs’11]

- Deterministic computation?
- Sub-classes of NP?

Π is publicly verifiable

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

ℳ

within 𝑇 steps

accept𝑥

ℳ , 𝑥 ℳ , 𝑥

Π

polylog(𝑇) Verifier running time:

polylog(𝑇)

What kind of computation can we hope to delegate based on

standard assumptions?
Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-

Wichs’11]

Π is publicly verifiable

SNARGs for Batch NP (or BARGs)

CRS

𝐶, 𝑥1, ⋯ , 𝑥𝑘 𝐶, 𝑥1, ⋯ , 𝑥𝑘

∀𝑖 ∈ [𝑘], 𝐶, 𝑥𝑖 ∈ SAT

SAT = (𝐶, 𝑥) ∃𝑤 𝑠. 𝑡. 𝐶 𝑥, 𝑤 = 1

SNARGs for Batch NP (or BARGs)

CRS

𝐶, 𝑥1, ⋯ , 𝑥𝑘

Π

𝐶, 𝑥1, ⋯ , 𝑥𝑘

∀𝑖 ∈ [𝑘], 𝐶, 𝑥𝑖 ∈ SAT

SAT = (𝐶, 𝑥) ∃𝑤 𝑠. 𝑡. 𝐶 𝑥, 𝑤 = 1

Π is publicly verifiable

SNARGs for Batch NP (or BARGs)

CRS

𝐶, 𝑥1, ⋯ , 𝑥𝑘

Π

𝐶, 𝑥1, ⋯ , 𝑥𝑘

∀𝑖 ∈ [𝑘], 𝐶, 𝑥𝑖 ∈ SAT

SAT = (𝐶, 𝑥) ∃𝑤 𝑠. 𝑡. 𝐶 𝑥, 𝑤 = 1

Π is publicly verifiable

No PPT can produce accepting Π if

∃𝑖∗ ∈ [𝑘], 𝐶, 𝑥𝑖∗ ∈ SAT

SNARGs for Batch NP (or BARGs)

CRS

𝐶, 𝑥1, ⋯ , 𝑥𝑘

Π

𝐶, 𝑥1, ⋯ , 𝑥𝑘

∀𝑖 ∈ [𝑘], 𝐶, 𝑥𝑖 ∈ SAT

SAT = (𝐶, 𝑥) ∃𝑤 𝑠. 𝑡. 𝐶 𝑥, 𝑤 = 1

Π is publicly verifiable

SNARGs for Batch NP (or BARGs)

CRS

𝐶, 𝑥1, ⋯ , 𝑥𝑘

𝑤1, … , 𝑤𝑘

𝐶, 𝑥1, ⋯ , 𝑥𝑘

∀𝑖 ∈ [𝑘], 𝐶, 𝑥𝑖 ∈ SAT

SAT = (𝐶, 𝑥) ∃𝑤 𝑠. 𝑡. 𝐶 𝑥, 𝑤 = 1

Π is publicly verifiable

SNARGs for Batch NP (or BARGs)

CRS

𝐶, 𝑥1, ⋯ , 𝑥𝑘

Π

≪ |𝑤| ⋅ 𝑘

𝐶, 𝑥1, ⋯ , 𝑥𝑘

∀𝑖 ∈ [𝑘], 𝐶, 𝑥𝑖 ∈ SAT

SAT = (𝐶, 𝑥) ∃𝑤 𝑠. 𝑡. 𝐶 𝑥, 𝑤 = 1

Π is publicly verifiable

SNARGs for Batch NP (or BARGs)

CRS

𝐶, 𝑥1, ⋯ , 𝑥𝑘

Π

≪ |𝑤| ⋅ 𝑘 Verifier running time:

𝑘 ⋅ |𝑥| + |Π|

𝐶, 𝑥1, ⋯ , 𝑥𝑘

∀𝑖 ∈ [𝑘], 𝐶, 𝑥𝑖 ∈ SAT

SAT = (𝐶, 𝑥) ∃𝑤 𝑠. 𝑡. 𝐶 𝑥, 𝑤 = 1

Π is publicly verifiable

Usefulness of BARGs

BARGs

Usefulness of BARGs
SNARGs for P
[C-Jain-Jin’21, Kalai-Vaikuntanathan-Zhang’21]

BARGs

Usefulness of BARGs
SNARGs for P
[C-Jain-Jin’21, Kalai-Vaikuntanathan-Zhang’21]

verifiable PIR
[Ben-David-Kalai-Paneth’22]

Incrementally Verifiable

Computation
[Devadas-Goyal-Kalai-Vaikuntanathan’22, Pass-

Paneth’22]

3 round public coin Zero-

Knowledge (ZK)
[Kiyoshima’22]

Non-Interactive ZK
[Champion-Wu’23, Bitansky-Kamath-

Paneth-Rothblum-Vasudevan’23]

Aggregate Signatures
[Waters-Wu’22]

BARGs

Construction of BARGs
SNARGs for P
[C-Jain-Jin’21, Kalai-Vaikuntanathan-Zhang’21]

verifiable PIR
[Ben-David-Kalai-Paneth’22]

Incrementally Verifiable

Computation
[Devadas-Goyal-Kalai-Vaikuntanathan’22, Pass-

Paneth’22]

3 round public coin Zero-

Knowledge (ZK)
[Kiyoshima’22]

Non-Interactive ZK
[Champion-Wu’23, Bitansky-Kamath-

Paneth-Rothblum-Vasudevan’23]

Aggregate Signatures
[Waters-Wu’22]

BARGs

Construction of BARGs
SNARGs for P
[C-Jain-Jin’21, Kalai-Vaikuntanathan-Zhang’21]

verifiable PIR
[Ben-David-Kalai-Paneth’22]

Incrementally Verifiable

Computation
[Devadas-Goyal-Kalai-Vaikuntanathan’22, Pass-

Paneth’22]

3 round public coin Zero-

Knowledge (ZK)
[Kiyoshima’22]

Non-Interactive ZK
[Champion-Wu’23, Bitansky-Kamath-

Paneth-Rothblum-Vasudevan’23]

Aggregate Signatures
[Waters-Wu’22]

BARGs

QR – Quadratic residuosity, LWE – Learning with Error, DDH – Decisional Diffie-Hellman,

DLIN – Decisional Linear Assumption over Bilinear Groups.

LWE
[C-Jain-Jin’21]

DLIN
[Waters-Wu’22]

Sub-exp DDH

+ QR
[C-Jain-Jin’21a, Hulett-Jawale-

Khurana-Srinivasan’22]

Construction of BARGs
SNARGs for P
[C-Jain-Jin’21, Kalai-Vaikuntanathan-Zhang’21]

verifiable PIR
[Ben-David-Kalai-Paneth’22]

Incrementally Verifiable

Computation
[Devadas-Goyal-Kalai-Vaikuntanathan’22, Pass-

Paneth’22]

3 round public coin Zero-

Knowledge (ZK)
[Kiyoshima’22]

Non-Interactive ZK
[Champion-Wu’23, Bitansky-Kamath-

Paneth-Rothblum-Vasudevan’23]

Aggregate Signatures
[Waters-Wu’22]

BARGs

QR – Quadratic residuosity, LWE – Learning with Error, DDH – Decisional Diffie-Hellman,

DLIN – Decisional Linear Assumption over Bilinear Groups.

LWE
[C-Jain-Jin’21]

DLIN
[Waters-Wu’22]

Sub-exp DDH

+ QR
[C-Jain-Jin’21a, Hulett-Jawale-

Khurana-Srinivasan’22]

Sub-exp DDH

This work

Our Results

Assuming sub-exponential hardness of DDH, there exists SNARGs for

batch NP where

Theorem 1

Π = poly(log 𝑘 , |𝐶|)

∀𝑖 ∈ [𝑘], 𝐶, 𝑥𝑖 ∈ SAT

SAT = (𝐶, 𝑥) ∃𝑤 𝑠. 𝑡. 𝐶 𝑥, 𝑤 = 1

Our Results

Assuming sub-exponential hardness of DDH, there exists SNARGs for P

where

Theorem 2

CRS , Π , | | = polylog(𝑇)

ℳ

within 𝑇 steps

accept𝑥

Our Results

Assuming sub-exponential hardness of DDH, there exists SNARGs for P

where

Theorem 2

CRS , Π , | | = polylog(𝑇)

ℳ

within 𝑇 steps

accept𝑥

Recent concurrent work [Kalai-Lombardi-

Vaikuntanathan’23]:

SNARGs for bounded depth

circuits assuming sub-exponential

hardness of DDH.

Our Results

Assuming sub-exponential hardness of DDH, there exists SNARGs for P

where

Theorem 2

CRS , Π , | | = polylog(𝑇)

Assuming sub-exponential hardness of DDH, there exists SNARGs for

batch NP where

Theorem 1

Π = poly(log 𝑘 , |𝐶|)

Meta View: Advanced Primitives from DDH

DDH

Meta View: Advanced Primitives from DDH

DDH

Identity Based Encryption

Non-Interactive Zero-Knowledge

Succinct Secure Computation

[Döttling-Garg‘17]

[Jain-Jin’21]

[Boyle-Gilboa-Ishai’16]

Meta View: Advanced Primitives from DDH

DDH

Identity Based Encryption

Non-Interactive Zero-Knowledge

SNARGs for P

Succinct Secure Computation

[Döttling-Garg‘17]

[Jain-Jin’21]

This work.

[Boyle-Gilboa-Ishai’16]

Tools and Techniques

Fiat-Shamir (FS) Methodology: Recipe for Success

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

𝛽 is a random string

Fiat-Shamir (FS) Methodology

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

𝛽 is a random string

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

[Fiat-Shamir’86]

Fiat-Shamir (FS) Methodology

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

𝛽 is a random string

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

[Fiat-Shamir’86]

∀ 𝑥 ∉ ℒ
BAD𝑥,𝛼 = 𝛽 ∃𝛾 s.t. Verifier accepts (𝛼, 𝛽, 𝛾)

Fiat-Shamir (FS) Methodology

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

𝛽 is a random string

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

[Fiat-Shamir’86]

∀ 𝑥 ∉ ℒ
BAD𝑥,𝛼 = 𝛽 ∃𝛾 s.t. Verifier accepts (𝛼, 𝛽, 𝛾)

If 𝑥 ∉ ℒ, no PPT can find 𝛼 such that

ℎ 𝑥, 𝛼 ∈ BAD𝑥,𝛼

Correlation Intractability [Canetti-Goldreich-Halevi’98]

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

𝛽 is a random string

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

[Fiat-Shamir’86]

∀ 𝑥 ∉ ℒ
BAD𝑥,𝛼 = 𝛽 ∃𝛾 s.t. Verifier accepts (𝛼, 𝛽, 𝛾)

If 𝑥 ∉ ℒ, no PPT can find 𝛼 such that

ℎ 𝑥, 𝛼 ∈ BAD𝑥,𝛼

ℎ is correlation intractable (CI) for BAD𝑥,𝛼

Instantiating the FS Transform

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

BAD𝑥,𝛼

Instantiating the FS Transform

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

Instantiating the FS Transform

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

secure

[C-Jain-Jin’21] Methodology

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

secure

Special interactive protocol for

batch NP

SNARGs for Batch NP

[C-Jain-Jin’21] Methodology

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

secure

SNARGs for Batch NP

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

Special interactive protocol for

batch NP

[C-Jain-Jin’21] Methodology

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

secure

SNARGs for Batch NP

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

Special interactive protocol for

batch NP

sub-exp

DDH

This work

see paper for details

[C-Jain-Jin’21] Methodology

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

secure

SNARGs for Batch NP

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

see paper for details

Magic Box
Special interactive protocol for

batch NP

[C-Jain-Jin’21] Methodology

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

secure

Magic Box
Special interactive protocol for

batch NP

SNARGs for Batch NP

see paper for details

[C-Jain-Jin’21] Methodology

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

secure

Magic Box
Special interactive protocol for

batch NP

SNARGs for Batch NP

see paper for details
What properties does BAD𝑥,𝛼 have?

Properties of BAD𝑥,𝛼

BAD𝑥,𝛼 is product verifiable.

∀ 𝑥 ∉ ℒ

BAD 𝑥,𝛼
(𝑗)

= 𝛽 ∃𝛾 s.t. Verifier accepts (𝛼, 𝛽, 𝛾)

Properties of BAD𝑥,𝛼

BAD𝑥,𝛼 is product verifiable.

∀ 𝑥 ∉ ℒ

BAD 𝑥,𝛼
(𝑗)

= 𝛽 ∃𝛾 s.t. Verifier accepts (𝛼, 𝛽, 𝛾)

BAD𝑥,𝛼 = BAD 𝑥,𝛼
(1)

× BAD 𝑥,𝛼
(2)

× BAD 𝑥,𝛼
(3)

× BAD 𝑥,𝛼
(4)

Properties of BAD𝑥,𝛼

BAD𝑥,𝛼 is product verifiable.

∀ 𝑥 ∉ ℒ

BAD 𝑥,𝛼
(𝑗)

= 𝛽 ∃𝛾 s.t. Verifier accepts (𝛼, 𝛽, 𝛾)

BAD𝑥,𝛼 = BAD 𝑥,𝛼
(1)

× BAD 𝑥,𝛼
(2)

× BAD 𝑥,𝛼
(3)

× BAD 𝑥,𝛼
(4)

Exponentially many bad challenges

even when 𝛽 sampled from

polynomial size challenge space.

Properties of BAD𝑥,𝛼

BAD𝑥,𝛼 is product verifiable.

∀ 𝑥 ∉ ℒ

BAD 𝑥,𝛼
(𝑗)

= 𝛽 ∃𝛾 s.t. Verifier accepts (𝛼, 𝛽, 𝛾)

BAD𝑥,𝛼 = BAD 𝑥,𝛼
(1)

× BAD 𝑥,𝛼
(2)

× BAD 𝑥,𝛼
(3)

× BAD 𝑥,𝛼
(4)

Each BAD𝑥,𝛼
(𝑖)

 is efficiently

verifiable

[C-Jain-Jin’21] Methodology

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

Prover(𝑥) Verifier(𝑥)

𝛼, 𝛾

ℎ

𝛽 = ℎ(𝑥, 𝛼)

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

secure

Magic Box
Special interactive protocol for

batch NP

SNARGs for Batch NP

see paper for details
What properties does BAD𝑥,𝛼 have?

[C-Jain-Jin’21] Methodology

Prover(𝑥) Verifier(𝑥)

𝛼

𝛽

𝛾

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

Magic Box
Special interactive protocol for

batch NP

see paper for details

Challenge space is of

polynomial size

Bad challenges are a

product set

Bad challenges are

product verifiable in TC0

TC0 - Constant depth polynomial-size

threshold circuits

BAD𝑥,𝛼 properties

3

1

2

[C-Jain-Jin’21] Methodology

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD𝑥,𝛼

Challenge space is of

polynomial size

Bad challenges are a

product set

Bad challenges are

product verifiable in TC0

TC0 - Constant depth polynomial-size

threshold circuits

BAD𝑥,𝛼 properties

3

1

2

[C-Jain-Jin’21] Methodology

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD′𝑥,𝛼

Challenge space is of

polynomial size

Bad challenges are a

product set

Bad challenges are

product verifiable in TC0

TC0 - Constant depth polynomial-size

threshold circuits

BAD𝑥,𝛼 properties

3

1

2

sub-exp

DDH

[Jain-Jin’21]

BAD′𝑥,𝛼

computable in

TC0

[C-Jain-Jin’21] Methodology

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD′𝑥,𝛼

Challenge space is of

polynomial size

Bad challenges are a

product set

Bad challenges are

product verifiable in TC0

TC0 - Constant depth polynomial-size

threshold circuits

BAD𝑥,𝛼 properties

3

1

2

sub-exp

DDH

[Jain-Jin’21]

BAD′𝑥,𝛼

computable in

TC0
?

[C-Jain-Jin’21] Methodology

BAD𝑥,𝛼

ℎ is correlation

intractable for

BAD′𝑥,𝛼

Challenge space is of

polynomial size

Bad challenges are a

product set

Bad challenges are

product verifiable in TC0

TC0 - Constant depth polynomial-size

threshold circuits

BAD𝑥,𝛼 properties

3

1

2

sub-exp

DDH

[Jain-Jin’21]

BAD′𝑥,𝛼

computable in

TC0
?

Difficulty [Holmgren-Lombardi-Rothblum’21]:

BAD𝑥,𝛼 has exponentially many bad

challenges.

[C-Jain-Jin’21] Methodology

BAD𝑥,𝛼

Challenge space is of

polynomial size

Bad challenges are a

product set

Bad challenges are

product verifiable in TC0

TC0 - Constant depth polynomial-size

threshold circuits

BAD𝑥,𝛼 properties

3

1

2

BAD′𝑥,𝛼

computable in

TC0
?

[C-Jain-Jin’21] Methodology

BAD𝑥,𝛼

Challenge space is of

polynomial size

Bad challenges are a

product set

Bad challenges are

product verifiable in TC0 poly

TC0 - Constant depth polynomial-size

threshold circuits

BAD𝑥,𝛼 properties

3

1

2

BAD′𝑥,𝛼

computable in

TC0 poly
?

For this talk

[C-Jain-Jin’21] Methodology

BAD𝑥,𝛼

Challenge space is of

polynomial size

Bad challenges are a

product set

Bad challenges are

product verifiable in poly

BAD𝑥,𝛼 properties

3

1

2

BAD′𝑥,𝛼

computable in

poly
?

For this talk

Easy Case: Verifiable Unique Bad Challenge

BAD𝑥,𝛼 = BAD 𝑥,𝛼
(1)

× BAD 𝑥,𝛼
(2)

× ⋯ × BAD 𝑥,𝛼
(𝑑)

Easy Case: Verifiable Unique Bad Challenge

BAD𝑥,𝛼 = BAD 𝑥,𝛼
(1)

× BAD 𝑥,𝛼
(2)

× ⋯ × BAD 𝑥,𝛼
(𝑑)

Compute Bad Challenge

for 𝛽 ∈ ChallengeSpace

if 𝛽 ∈ BAD 𝑥,𝛼
(1)

return 𝛽

ChallengeSpace polynomial size + BAD 𝑥,𝛼
(1)

 efficiently verifiable ⇒ BAD 𝑥,𝛼
(1)

 efficiently computable.

Easy Case: Verifiable Unique Bad Challenge

BAD𝑥,𝛼 = BAD 𝑥,𝛼
(1)

× BAD 𝑥,𝛼
(2)

× ⋯ × BAD 𝑥,𝛼
(𝑑)

Easy Case: Verifiable Unique Bad Challenge

BAD𝑥,𝛼 = BAD 𝑥,𝛼
(1)

× BAD 𝑥,𝛼
(2)

× ⋯ × BAD 𝑥,𝛼
(𝑑)

Compute Bad Challenge

for 𝑖 ∈ 𝑑

for 𝛽(𝑖) ∈ ChallengeSpace

if 𝛽(𝑖) ∈ BAD 𝑥,𝛼
(𝑖)

store 𝛽(𝑖)

return (𝛽 1 , ⋯ , 𝛽 𝑑)

poly repetitions + ChallengeSpace polynomial size + BAD 𝑥,𝛼
(𝑖)

 efficiently verifiable ⇒ BAD 𝑥,𝛼 efficiently computable.

Overview So Far

BAD𝑥,𝛼

Challenge space is of

polynomial size

Bad challenges are a

product set

Bad challenges are

product verifiable in poly

BAD𝑥,𝛼 properties

3

1

2

BAD′𝑥,𝛼

computable in

poly

BAD′′𝑥,𝛼

verifiable and

unique

Reducing to Verifiable Unique Bad Challenge
No parallel repetition

𝛽 1

ℓ = log2 |ChallengeSpace|

BAD 𝑥,𝛼
(1)

No restriction on number of bad challenges

Reducing to Verifiable Unique Bad Challenge
No parallel repetition

𝛽 1

ℓ = log2 |ChallengeSpace|

BAD 𝑥,𝛼
(1)

𝑘 segments

Each segment has ℓ/𝑘 bits

Sampling Challenges via Segments

Sampling Challenges via Segments

Sampling Challenges via Segments

Sampling Challenges via Segments

= ℎ(𝑥, 𝛼,)

= ℎ(𝑥, 𝛼)

ℎ is correlation intractable for efficiently verifiable

unique bad challenge relations.

Sampling Challenges via Segments

= ℎ(𝑥, 𝛼,)

= ℎ(𝑥, 𝛼)

= ℎ(𝑥, 𝛼,)

ℎ is correlation intractable for efficiently verifiable

unique bad challenge relations.

Sampling Challenges via Segments

= ℎ(𝑥, 𝛼,)

= ℎ(𝑥, 𝛼)

= ℎ(𝑥, 𝛼,)

= ℎ(𝑥, 𝛼,)

ℎ is correlation intractable for efficiently verifiable

unique bad challenge relations.

Reducing to Verifiable Unique Bad Challenge
No parallel repetition

𝛽 1

ℓ = log2 |ChallengeSpace|

BAD 𝑥,𝛼
(1)

𝑘 segments

Each segment has ℓ/𝑘 bits

Reducing to Verifiable Unique Bad Challenge
No parallel repetition

𝛽 1

ℓ = log2 |ChallengeSpace|

BAD 𝑥,𝛼
(1)

𝑘 segments

Each segment has ℓ/𝑘 bits

sBAD 1 sBAD 2 sBAD 3 sBAD 4

Reducing to Verifiable Unique Bad Challenge
No parallel repetition

𝛽 1

ℓ = log2 |ChallengeSpace|

BAD 𝑥,𝛼
(1)

𝑘 segments

Each segment has ℓ/𝑘 bits

sBAD 1 sBAD 2 sBAD 3 sBAD 4

Requirements:

1. Each sBAD 𝑗 must be efficiently verifiable unique bad

challenge relations.

2. If a challenge is bad, then there must exist a bad segment.

Reducing to Verifiable Unique Bad Challenge
No parallel repetition

𝛽 1

ℓ = log2 |ChallengeSpace|

BAD 𝑥,𝛼
(1)

𝑘 segments

Each segment has ℓ/𝑘 bits

sBAD 1 sBAD 2 sBAD 3 sBAD 4

Requirements:

1. Each sBAD 𝑗 must be efficiently verifiable unique bad

challenge relations.

2. If a challenge is bad, then there must exist a bad segment.

Defining Bad Segments

All bad challenges for BAD 𝑥,𝛼
(1)

Challenge space

Defining Bad Segments

= 0

= 1

Challenges with prefix 0

Challenges with prefix 1

is bad if

#bad challenges with prefix > #bad challenges/2

sBAD 1

Defining Bad Segments

= 0

= 1

is bad if

#bad challenges with prefix > #bad challenges/2

sBAD 1

Challenges with prefix 0

Challenges with prefix 1

Bad Segment

Defining Bad Segments

= 0

= 1

is bad if

#bad challenges with prefix > #bad challenges/2

sBAD 1

Challenges with prefix 0

Challenges with prefix 1

Bad Segment1. By pigeonhole principle, unique bad

2. ChallengeSpace polynomial size + BAD 𝑥,𝛼
(1)

efficiently verifiable ⇒ sBAD 1 efficiently

verifiable

Defining Bad Segments

0

Defining Bad Segments

0

0

= 1= 0

Challenges with prefix 00 Challenges with prefix 01

Defining Bad Segments

0

0

= 1= 0

Challenges with prefix 00 Challenges with prefix 01

is bad given if

 #bad challenges with prefix

> (#bad challenges with prefix)/2

sBAD 2

0

0

0

Defining Bad Segments

0

0

= 1= 0

Bad Segment

is bad given if

 #bad challenges with prefix

> (#bad challenges with prefix)/2

sBAD 2

0

0

0

Reducing to Verifiable Unique Bad Challenge
No parallel repetition

𝛽 1

ℓ = log2 |ChallengeSpace|

BAD 𝑥,𝛼
(1)

𝑘 segments

Each segment has ℓ/𝑘 bits

sBAD 1 sBAD 2 sBAD 3 sBAD 4

Requirements:

1. Each sBAD 𝑗 must be efficiently verifiable unique bad

challenge relations.

2. If a challenge is bad, then there must exist a bad segment.

Reducing to Verifiable Unique Bad Challenge
No parallel repetition

𝛽 1

ℓ = log2 |ChallengeSpace|

BAD 𝑥,𝛼
(1)

𝑘 segments

Each segment has ℓ/𝑘 bits

sBAD 1 sBAD 2 sBAD 3 sBAD 4

Requirements:

1. Each sBAD 𝑗 must be efficiently verifiable unique bad

challenge relations.

2. If a challenge is bad, then there must exist a bad segment.

Existence of a bad segment

𝛽

Bad challenge by assumption

Existence of a bad segment

⋮

𝛽

𝑘 segments

#bad challenges remaining

< 1

𝑇

< 𝑇/2

⋮

< 𝑇/4

Bad challenge by assumption

𝑘 such that 2𝑘 > 𝑇

𝑇 = #bad challenges BAD 𝑥,𝛼
(1)

Existence of a bad segment

𝛽

𝑘 segments

#bad challenges remaining

𝑇

< 𝑇/2

⋮

Bad challenge by assumption

𝑘 such that 2𝑘 > 𝑇

𝑇 = #bad challenges BAD 𝑥,𝛼
(1)

If each segment is good

Existence of a bad segment

𝛽

𝑘 segments

#bad challenges remaining

𝑇

< 𝑇/2

⋮

Bad challenge by assumption

𝑘 such that 2𝑘 > 𝑇

𝑇 = #bad challenges BAD 𝑥,𝛼
(1)

If each segment is good

< 𝑇/4

Existence of a bad segment

⋮

𝛽

𝑘 segments

#bad challenges remaining

< 1

𝑇

< 𝑇/2

⋮

< 𝑇/4

Bad challenge by assumption

𝑘 such that 2𝑘 > 𝑇

𝑇 = #bad challenges BAD 𝑥,𝛼
(1)

If each segment is good

Existence of a bad segment

⋮

𝛽

𝑘 segments

#bad challenges remaining

< 1

𝑇

< 𝑇/2

⋮

< 𝑇/4

Bad challenge by assumption

𝑘 such that 2𝑘 > 𝑇

𝑇 = #bad challenges BAD 𝑥,𝛼
(1)

If each segment is good

contradiction

Overview So Far

BAD𝑥,𝛼

Challenge space is of

polynomial size

Bad challenges are a

product set

Bad challenges are

product verifiable in poly

BAD𝑥,𝛼 properties

3

1

2

BAD′𝑥,𝛼

computable in

poly

BAD′′𝑥,𝛼

verifiable and

unique

No repetition

Concluding Remarks

See paper for:

1. Extension to parallel repetition.

2. Choice of parameters for size of segments, number of repetitions.

3. New somewhere extractable hash scheme necessary for “Magic
box”.

Recap: Our Results

Assuming sub-exponential hardness of DDH, there exists SNARGs for P

where

Theorem 2

CRS , Π , | | = polylog(𝑇)

Assuming sub-exponential hardness of DDH, there exists SNARGs for

batch NP where

Theorem 1

Π = poly(log 𝑘 , |𝐶|)

Thank you. Questions?
Arka Rai Choudhuri

arkarai.choudhuri@ntt-research.com

ia.cr/2022/1486

	Slide 1: Correlation Intractability and SNARGs from Sub-exponential DDH
	Slide 2: Succinct Non-Interactive Arguments (SNARGs)
	Slide 3: Succinct Non-Interactive Arguments (SNARGs)
	Slide 4: Succinct Non-Interactive Arguments (SNARGs)
	Slide 5: Succinct Non-Interactive Arguments (SNARGs)
	Slide 6: Succinct Non-Interactive Arguments (SNARGs)
	Slide 7: Succinct Non-Interactive Arguments (SNARGs)
	Slide 8: Succinct Non-Interactive Arguments (SNARGs)
	Slide 9: Succinct Non-Interactive Arguments (SNARGs)
	Slide 10: Succinct Non-Interactive Arguments (SNARGs)
	Slide 11: Succinct Non-Interactive Arguments (SNARGs)
	Slide 12: SNARGs for Batch NP (or BARGs)
	Slide 13: SNARGs for Batch NP (or BARGs)
	Slide 14: SNARGs for Batch NP (or BARGs)
	Slide 15: SNARGs for Batch NP (or BARGs)
	Slide 16: SNARGs for Batch NP (or BARGs)
	Slide 17: SNARGs for Batch NP (or BARGs)
	Slide 18: SNARGs for Batch NP (or BARGs)
	Slide 19: Usefulness of BARGs
	Slide 20: Usefulness of BARGs
	Slide 21: Usefulness of BARGs
	Slide 22: Construction of BARGs
	Slide 23: Construction of BARGs
	Slide 24: Construction of BARGs
	Slide 25: Our Results
	Slide 26: Our Results
	Slide 27: Our Results
	Slide 28: Our Results
	Slide 29: Meta View: Advanced Primitives from DDH
	Slide 30: Meta View: Advanced Primitives from DDH
	Slide 31: Meta View: Advanced Primitives from DDH
	Slide 32: Tools and Techniques
	Slide 33: Fiat-Shamir (FS) Methodology: Recipe for Success
	Slide 34: Fiat-Shamir (FS) Methodology
	Slide 35: Fiat-Shamir (FS) Methodology
	Slide 36: Fiat-Shamir (FS) Methodology
	Slide 37: Correlation Intractability [Canetti-Goldreich-Halevi’98]
	Slide 38: Instantiating the FS Transform
	Slide 39: Instantiating the FS Transform
	Slide 40: Instantiating the FS Transform
	Slide 41: [C-Jain-Jin’21] Methodology
	Slide 42: [C-Jain-Jin’21] Methodology
	Slide 43: [C-Jain-Jin’21] Methodology
	Slide 44: [C-Jain-Jin’21] Methodology
	Slide 45: [C-Jain-Jin’21] Methodology
	Slide 46: [C-Jain-Jin’21] Methodology
	Slide 47: Properties of subscript base , BAD , end base , sub , x ,, alpha end subscript
	Slide 48: Properties of subscript base , BAD , end base , sub , x ,, alpha end subscript
	Slide 49: Properties of subscript base , BAD , end base , sub , x ,, alpha end subscript
	Slide 50: Properties of subscript base , BAD , end base , sub , x ,, alpha end subscript
	Slide 51: [C-Jain-Jin’21] Methodology
	Slide 52: [C-Jain-Jin’21] Methodology
	Slide 53: [C-Jain-Jin’21] Methodology
	Slide 54: [C-Jain-Jin’21] Methodology
	Slide 55: [C-Jain-Jin’21] Methodology
	Slide 56: [C-Jain-Jin’21] Methodology
	Slide 57: [C-Jain-Jin’21] Methodology
	Slide 58: [C-Jain-Jin’21] Methodology
	Slide 59: [C-Jain-Jin’21] Methodology
	Slide 60: Easy Case: Verifiable Unique Bad Challenge
	Slide 61: Easy Case: Verifiable Unique Bad Challenge
	Slide 62: Easy Case: Verifiable Unique Bad Challenge
	Slide 63: Easy Case: Verifiable Unique Bad Challenge
	Slide 64: Overview So Far
	Slide 65: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 66: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 67: Sampling Challenges via Segments
	Slide 68: Sampling Challenges via Segments
	Slide 69: Sampling Challenges via Segments
	Slide 70: Sampling Challenges via Segments
	Slide 71: Sampling Challenges via Segments
	Slide 72: Sampling Challenges via Segments
	Slide 73: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 74: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 75: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 76: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 77: Defining Bad Segments
	Slide 78: Defining Bad Segments
	Slide 79: Defining Bad Segments
	Slide 80: Defining Bad Segments
	Slide 81: Defining Bad Segments
	Slide 82: Defining Bad Segments
	Slide 83: Defining Bad Segments
	Slide 84: Defining Bad Segments
	Slide 85: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 86: Reducing to Verifiable Unique Bad Challenge No parallel repetition
	Slide 87: Existence of a bad segment
	Slide 88: Existence of a bad segment
	Slide 89: Existence of a bad segment
	Slide 90: Existence of a bad segment
	Slide 91: Existence of a bad segment
	Slide 92: Existence of a bad segment
	Slide 93: Overview So Far
	Slide 94: Concluding Remarks
	Slide 95: Recap: Our Results
	Slide 96: Thank you. Questions?

